流体力学与飞行力学

航空CFD四十年的成就与困境

  • 阎超
展开
  • 北京航空航天大学 教育部流体力学重点实验室, 北京 100191

收稿日期: 2021-10-11

  修回日期: 2021-10-29

  网络出版日期: 2021-11-23

基金资助

国家自然科学基金创新群体项目(11721202);国家数值风洞工程(NNW2019ZT1-A03)

Achievements and predicaments of CFD in aeronautics in past forty years

  • YAN Chao
Expand
  • Ministry of Education Key Laboratory of Fluid Mechanics, Beihang University, Beijing 100191, China

Received date: 2021-10-11

  Revised date: 2021-10-29

  Online published: 2021-11-23

Supported by

National Natural Science Foundation of China (11721202); National Numerical Wind Tunnel Project (NNW2019ZT1-A03)

摘要

从20世纪80年代开始,基于Euler/RANS方程的CFD在航空领域得到了迅速的发展和广泛的应用,成为航空飞行器研制和空气动力学研究的重要手段。通过将论述和实例相结合的方法,综述了40年来CFD在军用和民用航空等方面取得的辉煌成就,同时也分析了其存在的不足,尤其是一直存在的艰难的瓶颈难题,即由于湍流模型能力不足导致的分离流模拟困难。对航空CFD的发展,从湍流模型和计算方法两个核心方面进行了讨论。最后给出了简要的总结和对未来发展的展望。

本文引用格式

阎超 . 航空CFD四十年的成就与困境[J]. 航空学报, 2022 , 43(10) : 526490 -526490 . DOI: 10.7527/S1000-6893.2021.26490

Abstract

Euler/RANS-based CFD methods have been rapidly developed and widely used in aeronautics since the 1980s, making remarkable achievements and playing an important role in aircraft development and aerodynamic research. This article reviews the achievements of CFD in military and civil aeronautics in the past four decades and analyzes its shortcomings, particularly the problem in separation flow simulation due to the turbulence modeling. The development of aeronautics CFD is discussed from the perspectives of turbulence models and numerical schemes. Finally, a brief conclusion and suggestions on future development are presented.

参考文献

[1] VAN LEER B. CFD education:past, present, future:AIAA-1999-0910[R]. Reston:AIAA, 1999.
[2] JAMESON A, SCHMIDT W, TURKEL E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes:AIAA-1981-1259[R]. Reston:AIAA, 1981.
[3] ROE P L. Approximate Riemann solvers, parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-377.
[4] VAN LEER B. Flux vector splitting for Euler equations[R]. Berlin:Lecture Notes in Physics, 1982.
[5] JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2):301-314.
[6] WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11):1299-1310.
[7] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1992.
[8] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[9] VAN LEAR B. Computational fluid dynamics:science or toolbox?[C]//15th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2001.
[10] 阎超, 席柯, 袁武, 等. DPW系列会议述评与思考[J]. 力学进展, 2011, 41(6):776-784. YAN C, XI K, YUAN W, et al. Review of the drag prediction workshop series[J]. Advances in Mechanics, 2011, 41(6):776-784 (in Chinese).
[11] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589 (in Chinese).
[12] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5):829-857. YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5):829-857 (in Chinese).
[13] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA CR 2014-218178[R]. Washington, D.C.:NASA, 2014.
[14] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344 (in Chinese).
[15] MALIK M, BUSHNELL D. Role of computational fluid dynamics and wind tunnels in aeronautics:NASA TP 2012-217602[R]. Washington, D.C.:NASA, 2012.
[16] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle[J]. Computers & Fluids, 2005, 34(10):1115-1151.
[17] TINOCO E N. The changing role of CFD in aircraft development:AIAA-1998-2512[R]. Reston:AIAA, 1998.
[18] SPALART P R, VENKATAKRISHNAN V. On the role and challenges of CFD in the aerospace industry[J]. The Aeronautical Journal, 2016, 120(1223):209-232.
[19] ABBAS-BAYOUMI A, BECKER K. An industrial view on numerical simulation for aircraft aerodynamic design[J].Journal of Mathematics in Industry, 2011, 1(1):1-14.
[20] ADEL A, KLAUS B. Numerical simulation airbus vision and strategy[M]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2012.
[21] RAJ P. Aircraft design in the 21 st century-implications for design methods[C]//29th AIAA Fluid Dynamics Conference. Reston:AIAA, 1998.
[22] CHAPMAN D R. A perspective on aerospace CFD[J]. Aerospace America, 1992,30(1):16-19.
[23] ROGERS S E, ROTH K, CAO H V, et al. Computation of viscous flow for a Boeing 777 aircraft in landing configuration[J]. Journal of Aircraft, 2001, 38(6):1060-1068.
[24] ANDERSON B, SHUR M, SPALART B, et al. Reduction of aerodynamic noise in a flight deck by use of vortex generators[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[25] KROLL N, ABU-ZURAYK M, DIMITROV D, et al. DLR project Digital-X:towards virtual aircraft design and flight testing based on high-fidelity methods[J]. CEAS Aeronautical Journal, 2016, 7(1):3-27.
[26] LUTTON M, CHESSER B L. Overview of the institute for high performance computing applications in air armament (IHAAA)[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[27] BAUM J, LUO H, LOEHNER R, et al. Application of unstructured adaptive moving body methodology to the simulation of fuel tank separation from an F-16 fighter[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997.
[28] ANDERSON W D, PATEL S R, BLACK C L. Low speed wind tunnel buffet testing on the F/A-22[J]. Journal of Aircraft, 2006, 43(4):879-885.
[29] WOODEN P, AZEVEDO J. Use of CFD in developing the JSF F-35 outer mold lines[C]//24th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2006.
[30] PULLIAM T H, JESPERSEN D C. Large scale aerodynamic calculation on Pleiades[C]//21 st International Conference on Parallel Computational Fluid Dynamics, 2009.
[31] 徐培敏. 倾转旋翼机气动性能及流场干扰数值模拟[D].北京:北京航空航天大学,2020. XU P M. Numerical simulation of aerodynamic performance and flow field interference of tilt rotor aircraft[D]. Beijing:Beihang University, 2020 (in Chinese).
[32] RUBBERT P. AIAA wright brothers lecture:CFD and the changing world of aircraft development:ICAS-94-02[R]. 1994.
[33] JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7):929-935.
[34] LEE-RAUSCH N, MILHOLEN W, MAVRIPLIS D. Transonic drag prediction using unstructured grid solvers:AIAA-2004-0554[R]. Reston:AIAA, 2004.
[35] VAN LEER B. Computational fluid dynamics:science or toolbox?:AIAA-2001-2520[R]. Reston:AIAA, 2001.
[36] FUJII K. Progress and future prospects of CFD in aerospace-wind tunnel and beyond[J]. Progress in Aerospace Sciences, 2005, 41(6):455-470.
[37] AIAA. 1 st AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop1/workshop1.html.
[38] AIAA. 2nd AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop2/workshop2.html.
[39] AIAA. 3rd AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/workshop3.html.
[40] AIAA. 4th AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop4/workshop4.html.
[41] AIAA. 5th AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/.
[42] AIAA. 6th AIAA CFD drag prediction workshop[EB/OL]. https://aiaa-dpw.larc.nasa.gov/.
[43] RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag-prediction workshop[J]. Computers & Fluids, 2005, 34(7):785-816.
[44] SALAS M D. Digital flight:The last CFD aeronautical grand challenge[J]. Journal of Scientific Computing, 2006, 28(2):479.
[45] 王运涛, 刘刚, 陈作斌. 第一届航空CFD可信度研讨会总结[J]. 空气动力学学报, 2019, 37(2):247-261, 246. WANG Y T, LIU G, CHEN Z B. Summary of the first aeronautical computational fluid dynamics credibility workshop[J]. Acta Aerodynamica Sinica, 2019, 37(2):247-261, 246 (in Chinese).
[46] FREMAUX C M, HALL R M. COMSAC:Computational methods for stability and control:NASA/CP-2004-213028[R]. Washington, D.C.:NASA, 2004.
[47] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3):252-263.
[48] DURBIN P A. Some recent developments in turbulence closure modeling[J]. Annual Review of Fluid Mechanics, 2018, 50:77-103.
[49] HANJALI' K. Second-moment turbulence closures for CFD:needs and prospects[J]. International Journal of Computational Fluid Dynamics, 1999, 12(1):67-97.
[50] RUMSEY C L. Turbulence modeling verification and validation:AIAA-2014-0201[R]. Reston:AIAA, 2014.
[51] CHARLES H, BENOIT T. Reynolds-averaged Navier-Stokes modelling for industrial applications and some challenging issues[J].International Journal of Computational Fluid Dynamics,2009, 23(4):295-303.
[52] XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations:A review[J]. Progress in Aerospace Sciences, 2019, 108:1-31.
[53] PRANDTL L. Uber ein neues formelsystem fur die ausgebildete turbulenz[Z]. Nacr Akad Wiss Gottingen, Math-Phys Kl, 1945.
[54] KOLMOGOROV A. Equations of turbulent motion of an incompressible fluid, Izv. Acad. Sci., USSR[Z]. Physics, 1942.
[55] CHOU P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics, 1945, 3(1):38-54.
[56] ROTTA J. Statistische theorie nichthomogener turbulenz[J]. Zeitschrift fur physik, 1951, 129(6):547-572.
[57] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289.
[58] WILCOX D C. Turbulence modeling for CFD[M]. 2nd ed. 1998.
[59] WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. 2006.
[60] WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11):2823-2838.
[61] MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003(4):1-8.
[62] MENTER F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics, 2009, 23(4):305-316.
[63] HUANG P G, BRADSHAW P. Law of the wall for turbulent flows in pressure gradients[J]. AIAA Journal, 1995, 33(4):624-632.
[64] HANJALIC K. Will RANS survive LES? A view of perspectives[J]. Journal of Fluids Engineering, 2005, 127(5):831-839.
[65] PENG S H, ELIASSON P. A comparison of turbulence models in prediction of flow around the DLR-F6 aircraft configuration[C]//22nd Applied Aerodynamics Conference and Exhibit. Reston:AIAA, 2004.
[66] CÉCORA R, EISFELD B, PROBST A, et al. Differential Reynolds stress modeling for aeronautics:AIAA-2012-0465[R]. Reston:AIAA,2012.
[67] CÉCORA R D, RADESPIEL R, EISFELD B, et al. Differential Reynolds-stress modeling for aeronautics[J]. AIAA Journal, 2015, 53(3):739-755.
[68] CHEN S S, LI Z, YUAN W, et al. Investigations on high-fidelity low-dissipation scheme for unsteady turbulent separated flows[J]. Aerospace Science and Technology, 2021, 115:106785.
[69] WANG Z J, FIDKOWSKI K, ABGRALL R, et al. High-order CFD methods:Current status and perspective[J]. International Journal for Numerical Methods in Fluids, 2013, 72(8):811-845.
[70] KROLL N, BIELER H, DECONINCK H, et al. ADIGMA-A European initiative on the development of adaptive high-order variational methods for aerospace applications[M]. Springer, 2010.
[71] KROLL N, LEICHT T, HIRSCH C, et al. Results and conclusions of the European project IDIHOM on high-order methods for industrial aerodynamic applications[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[72] 钱战森. Godunov型显式大时间步长格式研究进展[J]. 航空学报, 2020, 41(7):023575. QIAN Z S. Research progress of Godunov type explicit large time step scheme[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):023575 (in Chinese).
[73] 朱文庆, 肖志祥, 符松. 使用IDDES方法预测飞行速度对喷流噪声的影响[J]. 空气动力学学报, 2018, 36(3):463-469. ZHU W Q, XIAO Z X, FU S. The effects of flight velocity on jet noise are simulated by improved delayed detached eddy simulation with the modification of grid scale definition[J]. Acta Aerodynamica Sinica, 2018, 36(3):463-469 (in Chinese).
[74] DURAISAMY K, SPALART P, RUMSEY C. Status, emerging ideas and future directions of turbulence modeling research in aeronautics:NASA/TM-2017-219682[R]. Washington, D.C.:NASA, 2017.
[75] LOZANO-DURÁN A, BOSE S T, MOIN P. Performance of wall-modeled LES with boundary-layer-conforming grids for external aerodynamics[J]. AIAA Journal, 2022, 60(2):747-766.
[76] CHAPMAN D R. Computational aerodynamics development and outlook[J]. AIAA Journal, 1979, 17(12):1293-1313.
[77] TERRACOL M, MANOHA E. Wall-resolved large-eddy simulation of a three-element high-lift airfoil[J]. AIAA Journal, 2020, 58(2):517-536.
[78] BUSH R H, CHYCZEWSKI T S, DURAISAMY K, et al. Recommendations for future efforts in RANS modeling and simulation[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[79] RUMSEY C, SMITH B, HUANG G. Description of a website resource for turbulence modeling verification and validation[C]//40th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2010.
[80] BLATTNIG S, LUCKRING J, MORRISON J, et al. NASA standard for models and simulations:philosophy and requirements overview[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[81] EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5):1524-1541.
文章导航

/