综述

放电加工技术在航空航天制造中的应用

  • 赵万生 ,
  • 康小明 ,
  • 顾琳 ,
  • 奚学程 ,
  • 张亚欧 ,
  • 胡静 ,
  • 赵福春
展开
  • 上海交通大学 机械与动力工程学院 机械系统与振动国家重点实验室, 上海 200240

收稿日期: 2021-06-07

  修回日期: 2021-06-29

  网络出版日期: 2021-10-09

Application of electrical discharge machining technology in aerospace manufacturing

  • ZHAO Wansheng ,
  • KANG Xiaoming ,
  • GU Lin ,
  • XI Xuecheng ,
  • ZHANG Yaou ,
  • HU Jing ,
  • ZHAO Fuchun
Expand
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-06-07

  Revised date: 2021-06-29

  Online published: 2021-10-09

摘要

为获得更高的服役性能,航空航天领域大量采用高性能材料和复杂结构,这些都给制造技术带来巨大挑战。作为最为成熟、应用最为广泛的特种加工方法——放电加工(EDM)技术具有非接触、无切削力、加工性能不受材料强度、韧性、硬度、刚度等机械性能影响的特点,在航空航天产品特别是发动机产品中被广泛采用。重点介绍航空航天制造领域中放电加工技术国内外的相关研究进展及成功应用案例。另外,随着智能制造技术的发展并迅速渗透到航空航天制造领域,国内放电加工智能制造技术解决方案不断涌现,对几个典型的放电加工智能制造系统解决方案进行了介绍。

本文引用格式

赵万生 , 康小明 , 顾琳 , 奚学程 , 张亚欧 , 胡静 , 赵福春 . 放电加工技术在航空航天制造中的应用[J]. 航空学报, 2022 , 43(4) : 525936 -525936 . DOI: 10.7527/S1000-6893.2021.25936

Abstract

In order to obtain higher service performance, high performance materials and complex structures are widely used in aerospace field, which pose great challenges to manufacturing technology. As the most mature and widely used non-traditional machining method, Electrical Discharge Machining (EDM) is widely used in aerospace products, especially in engine products, because it has the characteristics of non-contact, no cutting force; also because the processing performance is not affected by mechanical properties such as material strength, toughness, hardness and stiffness. This paper focuses on the research progress and successful application cases of EDM in aerospace manufacturing field at home and abroad. In addition, with the development of intelligent manufacturing technology and rapid penetration into the field of aerospace manufacturing, domestic EDM intelligent manufacturing technology solutions are constantly emerging. Several typical solutions of EDM intelligent manufacturing system are also introduced in this paper.

参考文献

[1] 任凤英, 雷浩强, 裴聪. 叶片封严槽的电火花加工方法研究[J]. 机械, 2020, 47(4):70-74. REN F Y, LEI H Q, PEI C. EDM method for blade sealing groove[J]. Machinery, 2020, 47(4):70-74(in Chinese)
[2] 周公铜. 涡轮叶片缘板封严特性研究[D]. 南京:南京航空航天大学, 2014. ZHOU G T. Investigation on plate sealing performance characteristics of turbine blades[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[3] YOSHIDAA H, KIGAWA T, OOTA K. Groove forming method by discharge machining:US5461211[P]. 1995-10-24.
[4] 赵方超. 涡轮叶片流动换热的特性研究[D]. 南京:南京航空航天大学, 2015:92. ZHAO F C. Investigation on the characteristics of the flow and heat transfer of turbine blade[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:92(in Chinese).
[5] MARADIA U, KLIUEV M, BAUMGART C. Efficient machining of complex-shaped seal slots for turbomachinery[J]. CIRP Annals, 2018, 67(1):209-212.
[6] KLIUEV M, BOCCADORO M, PEREZ R, et al. EDM drilling and shaping of cooling holes in Inconel 718 turbine blades[J]. Procedia CIRP, 2016, 42:322-327.
[7] KLIUEV M, WEGENER K. Method of machining diffusors in Inconel 718 turbine blades for film cooling using EDM drilling and shaping[J]. Procedia CIRP, 2020, 95:511-515.
[8] BELLOTTI M, DE EGUILIOR CABALLERO J R, QIAN J, et al. Effects of partial tool engagement in micro-EDM milling and adaptive tool wear compensation strategy for efficient milling of inclined surfaces[J]. Journal of Materials Processing Technology, 2021, 288:116852.
[9] KLOCKE F, KLINK A, VESELOVAC D, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes[J]. CIRP Annals, 2014, 63(2):703-726.
[10] 朱海南, 齐歆霞. 涡轮叶片气膜孔加工技术及其发展[J]. 航空制造技术, 2011, 54(13):71-74. ZHU H N, QI X X. Development of machining technology gas holes on turbine blades[J]. Aeronautical Manufacturing Technology, 2011, 54(13):71-74(in Chinese).
[11] 许帅, 于冰. 浮动壁火焰筒群孔电火花加工工艺参数优化[J]. 电加工与模具, 2014(3):62-65. XU S, YU B. Process parameters optimization of EDM for the shock holes on floating wall flame tube[J]. Electromachining & Mould, 2014(3):62-65(in Chinese).
[12] 罗敏, 申玉萍, 胡东清. 喷油环微孔加工快换工装设计与应用[J]. 金属加工(冷加工), 2018(2):48-51. LUO M, SHEN Y P, HU D Q. Design and application of quick-change tooling for micro-hole machining of fuel injection ring[J]. Metal Working (Metal Cutting), 2018(2):48-51(in Chinese).
[13] 李树枫, 徐佩, 陈阳, 等. 三维空间小孔电火花编程加工工艺方法研究[J]. 电加工与模具, 2015(增刊1):44-46, 53. LI S F, XU P, CHEN Y, et al. The EDM study on the method of three dimensional hole[J]. Electromachining & Mould, 2015(Sup 1):44-46, 53(in Chinese).
[14] 何金梅, 王昱, 孙伟立. ZT系列电火花小孔机深度控制问题分析[J]. 金属加工(冷加工), 2013(22):14-16. HE J M, WANG Y, SUN W L. Analysis of depth control problems of ZT series EDM small hole machine[J]. Metal Working (Metal Cutting), 2013(22):14-16(in Chinese).
[15] XIA W W, ZHANG Y O, CHEN M, et al. Study on gap phenomena before and after the breakout event of fast electrical discharge machining drilling[J]. Journal of Manufacturing Science and Engineering, 2020, 142(4):041004.
[16] XIA W W, LI Z L, ZHANG Y O, et al. Breakout detection for fast EDM drilling by classification of machining state graphs[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5-6):1645-1656.
[17] 李朝将, 赵雷, 李勇, 等. 气膜冷却孔电火花加工参数优化及重熔层厚度测量实验[J]. 电加工与模具, 2016(2):15-19, 30. LI C J, ZHAO L, LI Y, et al. Process parameters optimization of film cooling holes and measurement experiment of recast layer thickness in EDM[J]. Electromachining & Mould, 2016(2):15-19, 30(in Chinese).
[18] 于冰, 朱海南. 航空发动机高涡叶片气膜孔电火花加工工艺参数优化[J]. 金属加工(冷加工), 2011(20):22-25. YU B, ZHU H N. Optimization of EDM process parameters for high-vortex blades of aeroengines[J]. Metal Working (Metal Cutting), 2011(20):22-25(in Chinese).
[19] 徐正扬, 张辰翔. 基于电火花-电解复合加工方法的微小孔制造[J]. 航空制造技术, 2018, 61(3):16-22. XU Z Y, ZHANG C X. Fabrication of small hole based on EDM & ECM hybrid machining method[J]. Aeronautical Manufacturing Technology, 2018, 61(3):16-22(in Chinese).
[20] 马名峻, 王德新. 一种利用电化学钝化极化现象的超深小孔电火花复合加工工艺[J]. 电加工与模具, 2015(增刊1):54-58, 62. MA M J, WANG D X. A new electro-discharge drilling technique based on electrochemical passivation effect of avoiding side discharge for ultra deep micro hole machine-shaping[J]. Electromachining & Mould, 2015(Sup 1):54-58, 62(in Chinese).
[21] 赵万生, 顾琳, 徐辉, 等. 基于流体动力断弧的高速电弧放电加工[J]. 电加工与模具, 2012(5):50-54. ZHAO W S, GU L, XU H, et al. High-speed electrical arc machining based on hydrodynamic arc breaking mechanism[J]. Electromachining & Mould, 2012(5):50-54(in Chinese).
[22] 陈吉朋. 高速电弧放电加工碳化硅铝基复合材料研究[D]. 上海:上海交通大学, 2017. CHEN J P. Research on high-speed arc discharge machining silicon carbide aluminum matrix composite materials[D]. Shanghai:Shanghai Jiaotong University, 2017(in Chinese).
[23] JIA Y C, CHI G X, SHEN Y, et al. Electrode design using revolving entity extraction for high-efficiency electric discharge machining of integral shrouded blisk[J]. Chinese Journal of Aeronautics, 2021, 34(6):178-187.
[24] DONG H, LIU Y H, LI M, et al. High-speed compound sinking machining of Inconel 718 using water in oil nanoemulsion[J]. Journal of Materials Processing Technology, 2019, 274:116271.
[25] ZHU G, ZHANG M, ZHANG Q H, et al. High-speed vibration-assisted electro-arc machining[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9-12):3121-3129.
[26] FARHADI A, ZHU Y M, GU L, et al. Electric arc sweep milling of open channels[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4):673-683.
[27] 朱颖谋, 基于复合断弧机制的电弧放电加工机理研究及轮廓切割加工工艺验证[D]. 上海:上海交通大学, 2018. ZHU Y M. Research on arc discharge machining mechanism based on compound arc breaking mechanism and verification of contour cutting process[D]. Shanghai:Shanghai Jiaotong University, 2018(in Chinese).
[28] 周尔民. 用放电磨削法高效磨削难加工材料[J]. 机械, 1994, 21(3):21. ZHOU E M. High efficiency grinding of difficult to machine materials by discharge grinding method[J]. Machinery, 1994, 21(3):21(in Chinese).
[29] 孙大椿. 电熔爆精加工研究[J]. 电加工与模具, 2006(2):53-55. SUN D C. Precision machining research of electrical melting and explosion[J]. Electromachining & Mould, 2006(2):53-55(in Chinese).
[30] 蒋亨顺, 牛立刚, 陈文华. 蜂窝件电火花加工工艺[J]. 电加工, 1995(5):31-33. JIANG H S, NIU L G, CHEN W H. EDM technology of honeycomb parts[J]. Electromachining, 1995(5):31-33(in Chinese).
[31] 刘斌, 朱红月, 张鲲, 等. 数控高效蜂窝磨削加工设备及工艺[J]. 电加工与模具, 2005(1):45-48. LIU B, ZHU H Y, ZHANG K, et al. The equipment and process of NC high efficiency beehive grinding machining[J]. Electromachining & Mould, 2005(1):45-48(in Chinese).
[32] 刘丹, 王德新, 崔秀藩. 大型蜂窝环件电火花磨削加工技术[J]. 金属加工(冷加工), 2011(9):21-23. LIU D, WANG D X, CUI X F. EDM grinding technology for large honeycomb rings[J]. Metal Working (Metal Cutting), 2011(9):21-23(in Chinese).
[33] XIA W W, LI Z L, ZHANG Y O, et al. Breakout detection for fast EDM drilling by classification of machining state graphs[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5-6):1645-1656.
[34] 朱思萌, 王健, 闫晓燊, 等. 基于蚁群算法的涡轮叶片外轮廓激光测量技术研究[J]. 电加工与模具, 2020(5):69-74. ZHU S M, WANG J, YAN X S, et al. Research on laser measurement technology of turbine blade contour based on ant colony algorithm[J]. Electromachining & Mould, 2020(5):69-74(in Chinese).
[35] 闫晓燊, 朱思萌, 奚学程, 等. 基于激光测量的成形电极损耗检测及修整技术研究[J]. 电加工与模具, 2020(4):12-16, 35. YAN X S, ZHU S M, XI X C, et al. Research on measuring and dressing technology of EDM electrode loss based on laser inspection[J]. Electromachining & Mould, 2020(4):12-16, 35(in Chinese).
[36] XIA W W, LI Z L, CHEN M, et al. Study on electrode vibration in the touch-down stage of fast electrical discharge machining drilling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(7-8):2273-2283.
[37] LIU X, KANG X M, XI X C, et al. Electrode feed path planning for multi-axis EDM of integral shrouded impeller[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):1697-1706.
[38] KANG X M, LIANG W, YANG Y X, et al. Maximum free distance method for electrode feeding path planning in EDM machining of integral shrouded blisks[J]. Precision Engineering, 2018, 51:514-520.
[39] KANG X M, LIANG W, ZHAO W S, et al. Feeding with perturbations in the EDM process of an integral shrouded blisk[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12):3951-3957.
[40] CHEN M, ZHAO W S, XI X C. Augmented Taylor's expansion method for B-spline curve interpolation for CNC machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 94:109-119.
[41] CHEN H, XI X C, ZHAO W S, et al. Feedrate planning for synchronized movements involving rotary axes in multi-axis EDM for shrouded blisks[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12):2645-2654.
[42] XI X C, CHEN H, LIU H D, et al. Extended unit arc length increment interpolation for generalized NURBS curves in multi-axis EDM[J]. Precision Engineering, 2019, 59:81-89.
[43] 何国健, 顾琳, 董海洪, 等. 三元流叶轮的电弧铣削与机械铣削组合加工[J]. 航空制造技术, 2019, 62(11):39-46. HE G J, GU L, DONG H H, et al. Combined machining of three-dimensional flow impeller by EAM milling and CNC milling[J]. Aeronautical Manufacturing Technology, 2019, 62(11):39-46(in Chinese).
[44] GU L, CHEN J P, XU H, et al. Blasting erosion arc machining of 20vol.% SiC/Al metal matrix composites[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12):2775-2784.
[45] 陈默. 基于编码器/播放器架构的新型数控系统及其插补器的研究[D]. 上海:上海交通大学, 2016. CHEN M. A new type of CNC system and its interpolator based on digitizer/player architecture[D]. Shanghai:Shanghai Jiao Tong University, 2016(in Chinese).
[46] XIA W W, LI Z L, ZHANG Y O, et al. Breakout detection for fast EDM drilling by classification of machining state graphs[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5-6):1645-1656.
文章导航

/