流体力学与飞行力学

双后掠乘波体高超声速试验与数值分析

  • 刘传振 ,
  • 孟旭飞 ,
  • 刘荣健 ,
  • 白鹏
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2021-06-24

  修回日期: 2021-07-19

  网络出版日期: 2021-09-22

Experimental and numerical investigation of hypersonic performance of double swept waverider

  • LIU Chuanzhen ,
  • MENG Xufei ,
  • LIU Rongjian ,
  • BAI Peng
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2021-06-24

  Revised date: 2021-07-19

  Online published: 2021-09-22

摘要

根据密切锥方法提出定平面形状乘波体设计, 以改善乘波体性能缺陷为目的生成双后掠外形。构建风洞试验模型在高超声速风洞中开展试验, 模型分别为弯头双后掠(BEND)和尖头双后掠(CUSP)乘波体, 并以一个单后掠外形作为对比模型。综合风洞试验和数值分析手段, 研究了前缘钝化的影响, 分析对比了模型的升阻力特性、纵向稳定性等性能, 发现前缘钝化对乘波体的升阻比影响很大, 而高超声速状态的数值模拟结果与风洞试验差别较小, BEND、CUSP模型的升阻比误差分别为0.19%、-0.23%,均小于0.5%。风洞试验和数值模拟数据表明, 双后掠乘波体在设计状态保持了“乘波”特性, 而且纵向稳定性得到很大提升, 验证了双后掠乘波体设计方法和设计外形的有效性。

本文引用格式

刘传振 , 孟旭飞 , 刘荣健 , 白鹏 . 双后掠乘波体高超声速试验与数值分析[J]. 航空学报, 2022 , 43(9) : 126015 -126015 . DOI: 10.7527/S1000-6893.2021.26015

Abstract

A design method of the planform-customized waverider is proposed using the osculating-cone method, so as to enable the design of a double swept waverider to remedy the deficiencies of the waverider. To valid the proposed method, two models of the double swept waverider with a cusp head and a bend head are fabricated for wind tunnel tests, and a model of the single swept waverider is also constructed as the configuration for comparison. A variety of experiments at design-Mach-number conditions are performed in the hypersonic wind tunnel, and the Computational Fluid Dynamics (CFD) simulations are also conducted. The effect of bluntness, aerodynamic forces and longitudinal stability are studied. The results of comparison indicate that the bluntness of leading-edge area influences the lift-to-drag (L/D) ratio significantly; the aerodynamic performances obtained from wind tunnel tests are very close to those of CFD simulations, marking a difference in L/D of less than 0.5% in the design state. The data from both experiments and simulations show that the double swept waverider can maintain the "wave-riding" performance in the hypersonic state and its longitudinal stability is improved dramatically compared with that of the single swept configuration, verifying the effectiveness of the proposed method and the design configuration.

参考文献

[1] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528.
[2] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Archive of Applied Mechanics, 1968, 37(1): 56-72.
[3] RASMUSSEN M L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6): 537-545.
[4] LE G G, MA D W, LI Z Y. Computation of hypersonic flowfields for elliptic-cone-derived waveriders[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2006, 30(3): 257-260 (in Chinese). 乐贵高, 马大为, 李自勇. 椭圆锥乘波体高超声速流场数值计算[J]. 南京理工大学学报(自然科学版), 2006, 30(3): 257-260.
[5] LIU C Z, BAI P, CHEN B Y, et al. Rapid design and multi-object optimization for waverider from 3D flow[J]. Journal of Astronautics, 2016, 37(5): 535-543 (in Chinese). 刘传振, 白鹏, 陈冰雁, 等. 三维流场乘波体快速设计方法及多目标优化[J]. 宇航学报, 2016, 37(5): 535-543.
[6] LOBBIA M A, SUZUKI K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J]. AIAA Journal, 2014, 53(6): 1590-1601.
[7] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock wave[C]//The First International Waverider Symposium. Maryland: University of Maryland, 1990.
[8] ZHOU H, JIN Z G. Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124035 (in Chinese). 周航, 金志光. 非均匀来流下三维激波反问题的微元密切轴对称解法[J]. 航空学报, 2020, 41(12): 124035.
[9] SZEMA K Y, LIU Z N, MUNIPALLI R. An efficient GUI design tool for high-speed airbreathing propulsion integration[C]//28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010.
[10] ZHAO Z T, HUANG W, JIN H S, et al. Effects of Mach number discrete method on shape and aerodynamic performance of osculating cone variable Mach number waverider[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124074 (in Chinese). 赵振涛, 黄伟, 金宏盛, 等. 马赫数离散方式对吻切锥变马赫数乘波飞行器构型和气动性能的影响[J]. 航空学报, 2020, 41(12): 124074.
[11] RODI P. The osculating flowfield method of waverider geometry generation[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
[12] RODI P. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
[13] DUAN Y H, FAN Z L, WU W H. Generation and design methods of osculating cone waverider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3023-3034 (in Chinese). 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10): 3023-3034.
[14] KONTOGIANNIS K, SÓBESTER A, TAYLOR N. Waverider design based on three-dimensional leading edge shapes[J]. Journal of Aircraft, 2017, 54(5): 2010-2012.
[15] LI J, YI H X, WANG D, et al. Aerodynamic performance of double swept waverider based on projection method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124703 (in Chinese). 李珺, 易怀喜, 王逗, 等. 基于投影法的双后掠乘波体气动性能[J]. 航空学报, 2021, 42(12): 124703.
[16] ZHAO Z T, HUANG W, YAN B B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica, 2018, 151: 848-863.
[17] ZHAO Z T, HUANG W, YAN L, et al. Low speed aerodynamic performance analysis of vortex lift waveriders with a wide-speed range[J]. Acta Astronautica, 2019, 161: 209-221.
[18] LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120808 (in Chinese). 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6): 120808.
[19] LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121824 (in Chinese). 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7): 121824.
[20] TAKASHIMA N, LEWIS M J. Navier-Stokes computation of a viscous optimized waverider[J]. Journal of Spacecraft & Rockets, 1992, 31(3): 383-391.
[21] GILLUM M J, LEWIS M J. Experimental results on a Mach 14 waverider with blunt leading edges[J]. Journal of Aircraft, 1997, 34(3): 296-303.
[22] CHARLES COCKRELL S E, HUEBNER L, FINLEY D. Aerodynamic performance and flow-field characteristics of two waverider-derived hypersonic cruise configurations[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995.
[23] LIU C Z, BAI P. Mathematical expression of geometric relationship in osculating-cone waverider design[J]. Journal of Aircraft, 2021, 58(4): 858-866.
[24] TINCHER D, BURNETTA D. Hypersonic waverider test vehicle-The logical next step[C]//30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
[25] ZHANG H J, SHEN Q. Experimental investigation of leading edge bluntness effects on hypersonic two-dimensional inlet[J]. Procedia Engineering, 2015, 99: 1582-1590.
[26] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[27] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31 st Aerospace Sciences Meeting. Reston: AIAA, 1993.
[28] KERMANI M, PLETT E. Modified entropy correction formula for the Roe scheme[C]//39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
[29] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[30] CHEN R F, WANG Z J. Fast, block lower-upper symmetric Gauss-seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12): 2238-2245.
文章导航

/