机器人先进制造与装配技术专栏

机器人铣削系统精度控制方法及试验

  • 李宇飞 ,
  • 田威 ,
  • 李波 ,
  • 张楠
展开
  • 1. 南京航空航天大学 机电学院, 南京 210016;
    2. 西门子(中国)有限公司, 北京 100102

收稿日期: 2021-05-14

  修回日期: 2021-06-29

  网络出版日期: 2021-08-25

基金资助

国家自然科学基金(52005254,52075256);江苏省自然科学基金(BK20190417)

Accuracy control method and experiment of robot milling system

  • LI Yufei ,
  • TIAN Wei ,
  • LI Bo ,
  • ZHANG Nan
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Siemens (China) Co., Ltd, Beijing 100102, China

Received date: 2021-05-14

  Revised date: 2021-06-29

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China (52005254, 52075256); Natural Science Foundation of Jiangsu Province (BK20190417)

摘要

新一代航空航天器大量使用一体化复杂大部件作为主要结构,传统机床难以满足其高质量、高效率、高柔性的加工需求,以工业机器人为载体的加工系统是解决该问题的有效新途径,但面临机器人精度低、刚性差的瓶颈。为提高工业机器人的加工精度,搭建了基于数控系统的机器人铣削系统,提出了关节空间-笛卡尔空间分级精度补偿方法。静载试验结果表明,机器人的重复定位精度由0.154 mm提高到0.039 mm,提高了74.68%;绝对定位精度由1.307 mm提高到0.156 mm,提高了88.06%;轨迹精度由1.346 mm提高到0.181 mm,提高了86.55%,实现了点位与轨迹精度的在线实时补偿。铣削试验结果表明,复合材料舱段铣削精度达到0.22 mm,表面粗糙度优于Ra4.8,机器人铣削系统能够满足航空航天零部件的加工精度要求。

本文引用格式

李宇飞 , 田威 , 李波 , 张楠 . 机器人铣削系统精度控制方法及试验[J]. 航空学报, 2022 , 43(5) : 625815 -625815 . DOI: 10.7527/S1000-6893.2021.25815

Abstract

The new generation of aerospace vehicles use a large number of integrated complex components as their main structure. Therefore, the traditional machine tools are difficult to meet the high machining quality, high efficiency, and high flexibility requirements of complex components. Although faced with the bottleneck of low precision and poor rigidity of the robot, the equipment of machining system, based on industrial robot is an effective new way to solve this problem. In order to improve the machining accuracy of industrial robot, a robot milling system based on Siemens 840Dsl CNC system is built. By using the joint-Cartesian space combined accuracy compensation method, the repetitive positioning accuracy of the robot is increased by 74.68% from 0.154 mm to 0.039 mm, the absolute positioning accuracy increased by 88.06% from 1.307 mm to 0.156 mm, and the trajectory accuracy increased by 86.55% from 1.346 mm to 0.181 mm. The on-line real-time compensation of positions and trajectories is realized. The milling experimental results show that the milling accuracy of the composite cabin reaches 0.22 mm, and the surface roughness is better than Ra4.8. Thus, robot milling system meets the requirements of aerospace parts processing.

参考文献

[1] 田威, 廖文和. 工业机器人精度补偿技术及应用[M]. 北京:科学出版社, 2019:2-4. TIAN W, LIAO W H. Accuracy compensation technology and application of industrial robot[M]. Beijing:China Science Publishing & Media Ltd., 2019:2-4(in Chinese).
[2] 黄志刚, 柯映林. 飞机整体框类结构件铣削加工的模拟研究[J]. 中国机械工程, 2004, 15(11):991-995. HUANG Z G, KE Y L. Study on key technologies of milling process simulation for aerospace monolithic components[J].China Mechanical Engineering, 2004, 15(11):991-995(in Chinese).
[3] 布音. 工业机器人精密制孔系统刚度特性研究[D]. 南京:南京航空航天大学, 2017:1-5. BU Y. Analysis of stiffness properities for robotic precise drilling system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:1-5(in Chinese).
[4] DEVLIEG R. High-accuracy robotic drilling/milling of 737 inboard flaps[J]. SAE International Journal of Aerospace, 2011, 4(2):1373-1379.
[5] 丰飞, 杨海涛, 唐丽娜, 等. 大构件重载高精加工机器人本体研制与性能提升关键技术[J]. 中国机械工程, 2021, 32(19):2269-2287. FENG F, YANG H T, TANG L N, et al. Key technologies of development and performance improvement of the heavy-duty and high precision machining robot[J]. China Mechanical Engineering, 2021, 32(19):2269-2287(in Chinese).
[6] YAMANE Y,YIN R S, MIYAKE M, et al. Measuring and cutting a propeller for a ship by an articulated robot[J]. Journal of the Japan Society for Precision Engineering, 1991, 57(8):1387-1392.
[7] MENG F, ZHANG H O, WANG G L. Application of industrial robot in rapid prototype manufacturing technology[C]//2010 the 2nd International Conference on Industrial Mechatronics and Automation. Piscataway, NJ:IEEE Press, 2010:218-220.
[8] JOHN P, CHRISTOS D, PANAGIOTIS S,et al. Machining with robots:A critical review[C]//7th International Conference on Digital Enterprise Technology. Athens:Laboratory for Manufacturing Systems and Automation, 2011:1-9.
[9] CHEN Y H, DONG F H. Robot machining:recent development and future research issues[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1489-1497.
[10] ABELE E, WEIGOLD M, ROTHENBVCHER S. Modeling and identification of an industrial robot for machining applications[J]. CIRP Annals, 2007, 56(1):387-390.
[11] ABELE E, ROTHENBVCHER S, WEIGOLD M. Cartesian compliance model for industrial robots using virtual joints[J]. Production Engineering, 2008, 2(3):339-343.
[12] ABELE E, BAUER J, ROTHENBVCHER S, et al. Prediction of thetool displacement by coupled models of the compliant industrial robot and the milling process[C]//International Conference on Process Machine Interactions, 2008:223-230.
[13] ABELE E, BAUER J, PISCHAN M, et al. Prediction of the tool displacement for robot milling applications using coupled models of an industrial robot and removal simulation[C]//Proceedings of the CIRP 2nd International Conference Process Machine Interactions, 2010:10.
[14] ABELE E, BAUER J, HEMKER T, et al. Comparison and validation of implementations of a flexible joint multibody dynamics system model for an industrial robot[J]. CIRP Journal of Manufacturing Science and Technology, 2011, 4(1):38-43.
[15] WANG J J, ZHANG H, FUHLBRIGGE T. Improving machining accuracy with robot deformation compensation[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2009:3826-3831.
[16] PAN Z X, ZHANG H. Improving robotic machining accuracy by real-time compensation[C]//2009 ICCAS-SICE. Piscataway, NJ:IEEE Press, 2009:4289-4294.
[17] LEHMANN C, OLOFSSON B, NILSSON K, et al. Robot joint modeling and parameter identification using the clamping method[J]. IFAC Proceedings Volumes, 2013, 46(9):813-818.
[18] LEHMANN C, HALBAUER M, EUHUS D, et al. Milling with industrial robots:Strategies to reduce and compensate process force induced accuracy influences[C]//Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012). Piscataway, NJ:IEEE Press, 2012:1-4.
[19] 焦嘉琛. 工业机器人作业系统刚度强化机制与轨迹补偿方法研究[D]. 南京:南京航空航天大学, 2020:100-101. JIAO J C. Research on the stiffness strengthening mechanism and trajectory compensation method of industrial robot operating system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020:100-101(in Chinese).
[20] GONUL B, SAPMAZ O F, TUNC L T. Improved stable conditions in robotic milling by kinematic redundancy[J]. Procedia CIRP, 2019, 82:485-490.
[21] SCHNEIDER U, MOMENI-K M, ANSALONI M, et al. Stiffness modeling of industrial robots for deformation compensation in machining[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2014:4464-4469.
[22] NAM H H, KOUROUSSIS G, VERLINDEN O, et al. Modal updating of a 6-axis robot for milling application[C]//Proceedings of the 25th International Congress on Sound and Vibration, 2018:1-8.
[23] SCHNEIDER U, DRUST M, POSADA D, et al.Position control of an industrial robot using an optical measurement system for machining purposes[C]//Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013), 2013.
[24] SCHNEIDER U, DRUST M, ANSALONI M, et al. Improving robotic machining accuracy through experimental error investigation and modular compensation[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):3-15.
[25] MOELLER C, SCHMIDT H C, KOCH P, et al. Realtime pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system[J]. SAE International Journal of Aerospace, 2017, 10(2):100-108.
[26] OLOFSSON B, SÖRNMO O, SCHNEIDER U, et al. Modeling and control of a piezo-actuated high-dynamic compensation mechanism for industrial robots[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2011:4704-4709.
[27] SCHNEIDER U, DRUST M, PUZIK A, et al. Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism[J]. Procedia CIRP, 2013, 7:305-310.
[28] ABELE E, SCHVTZER K, BAUER J, et al. Tool path adaption based on optical measurement data for milling with industrial robots[J]. Production Engineering, 2012, 6(4-5):459-465.
[29] ZENG Y F, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):2745-2755.
[30] 曾远帆. 基于空间相似性的工业机器人定位精度补偿技术研究[D]. 南京:南京航空航天大学, 2017. ZENG Y F. Positional error compensation technology for industrial robot based on spatial similarity[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
[31] 何晓煦, 田威, 曾远帆, 等. 面向飞机装配的机器人定位误差和残差补偿[J]. 航空学报, 2017, 38(4):420538. HE XX, TIAN W, ZENG Y F, et al. Robot positioning error and residual error compensation for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):420538(in Chinese).
[32] TIAN W, MEI D Q, LI P C, et al. Determination of optimal samples for robot calibration based on error similarity[J]. Chinese Journal of Aeronautics, 2015, 28(3):946-953.
[33] LI B, TIAN W, ZHANG C F, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2):346-360.
[34] ZENG Y F, TIAN W, LIAO W H. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120.
[35] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12642-2013中华人民共和国推荐性国家标准:工业机器人性能规范及其试验方法[S]. 北京:中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.GB/T 12642-2013 National standard (recommended) of the People's Republic of China:Industrial robots-Performance criteria and related test methods[S]. Beijing:Standards Press of China, 2014(in Chinese).
[36] ROTH Z, MOORING B, RAVANI B. An overview of robot calibration[J]. IEEE Journal on Robotics and Automation, 1987, 3(5):377-385.
[37] WHITNEY D E, LOZINSKI C A, ROURKE J M. Industrial robot forward calibration method and results[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108(1):1-8.
文章导航

/