综述

单晶涡轮叶片高能束修复研究进展

  • 张佩宇 ,
  • 周鑫 ,
  • 李应红
展开
  • 空军工程大学 航空工程学院 航空等离子体动力学国家重点实验室, 西安 710038

收稿日期: 2021-03-30

  修回日期: 2021-04-28

  网络出版日期: 2021-06-29

基金资助

国家自然科学基金(91860136,51801231);陕西省重大专项(2018zdzx01-04-01)

Progress on high energy beam repair of single crystal turbine blades

  • ZHANG Peiyu ,
  • ZHOU Xin ,
  • LI Yinghong
Expand
  • Science and Technology on Plasma Dynamics Laboratory, College of Aeronautical Engineering, Air Force Engineering University, Xi'an 710038, China

Received date: 2021-03-30

  Revised date: 2021-04-28

  Online published: 2021-06-29

Supported by

National Natural Science Foundation of China (91860136, 51801231); Key Science and Technology Project of Shaanxi Province (2018zdzx01-04-01)

摘要

单晶涡轮叶片高能束增材再制造是修复磨损、烧蚀和裂纹等损伤缺陷的主要方式,是航空发动机热端部件特种加工领域最具挑战性的工作之一,其中蕴含的外延生长组织接续与调控机制、内部冶金缺陷控制等科学问题和关键工艺尚未完全突破。梳理了熔焊熔池内凝固组织定向生长的理论发展,基于已有的枝晶异质形核和异向生长理论,构建了单晶高能束修复的基础原理框架;详细分析了"修复工艺-熔池特性-凝固组织"之间的内在关联,提出了保持单晶连续稳定生长的工艺调控准则和熔池监控方法;总结了修复区γ'相等微观组织以及热裂纹、气孔等冶金缺陷的演化规律和调控手段,凝练了单晶修复面临的主要挑战。此外,介绍了航空发动机热端部件再制造领域相关的国外重大研究计划,并对今后研究方向和发展趋势进行总结和展望。

本文引用格式

张佩宇 , 周鑫 , 李应红 . 单晶涡轮叶片高能束修复研究进展[J]. 航空学报, 2022 , 43(4) : 525610 -525610 . DOI: 10.7527/S1000-6893.2021.25610

Abstract

As one of the most challenging tasks in the field of special processing for hot-section aero-engines parts, high-energy beam additive remanufacturing is the main way to repair damages such as wear, ablation and cracks of single crystal turbine blades. However, several scientific issues and key processes including epitaxial growth, defect formation mechanism, and their control methods, have not yet been completely broken through. In this paper, we sort out the development history of the rapid solidification theories. Based on the principles of columnar-to-equiaxed transition and oriented to misoriented transition, we establish a fundamental framework for high-energy beam repair of single crystal. After analyzing the intrinsic relationship among repair processes, melt pool characteristics and solidification structures in detail, we propose the process control criteria and monitoring method to maintain the continuous and stable growth of single crystal and summarize the of microstructure (e.g., γ'-phases) and defects (e.g., hot cracks and pores) development in the repaired zone, and the main challenges in single crystal repair. In addition, several major foreign research plans related to remanufacturing of aero-engines components are introduced, and future development trends are prospected.

参考文献

[1] POLLOCK T M. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15(8):809-815.
[2] GELL M, DUHL D N, GIAMEI A F. The development of single crystal superalloy turbine blades[C]//Superalloys 1980(Fourth International Symposium), 1980:205-214.
[3] POLLOCK T M, TIN S. Nickel-based superalloys for advanced turbine engines:Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2):361-374.
[4] 李茜, 张福禄, 赵子华. 镍基单晶/柱晶高温合金超高周疲劳研究进展[J]. 航空学报, 2021, 42(5):524340. LI Q, ZHANG F L, ZHAO Z H. Very high cycle fatigue of nickel-based single-crystal and directionally solidified superalloys:Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524340(in Chinese).
[5] CARTER T J. Common failures in gas turbine blades[J]. Engineering Failure Analysis, 2005, 12(2):237-247.
[6] 姚喆赫, 姚建华, 向巧. 激光再制造技术与应用发展研究[J]. 中国工程科学, 2020, 22(3):63-70. YAO Z H, YAO J H, XIANG Q. Development of laser remanufacturing technology and application[J]. Strategic Study of CAE, 2020, 22(3):63-70(in Chinese).
[7] VILAR R, ALMEIDA A. Repair and manufacturing of single crystal Ni-based superalloys components by laser powder deposition-A review[J]. Journal of Laser Applications, 2015, 27(S1):S17004.
[8] CHEN C, WANG J, LIAO H, et al. Laser cladding of metals[M]. Germany:Springer Press, 2021:137-159.
[9] PANWISAWAS C, TANG Y T, REED R C. Metal 3D printing as a disruptive technology for superalloys[J]. Nature Communications, 2020, 11:2327.
[10] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese).
[11] BASAK A, DAS S. Epitaxy and microstructure evolution in metal additive manufacturing[J]. Annual Review of Materials Research, 2016, 46:125-149.
[12] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Progress in Materials Science, 2018, 92:112-224.
[13] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117:371-392.
[14] ANGEL N M, BASAK A. On the fabrication of metallic single crystal turbine blades with a commentary on repair via additive manufacturing[J]. Journal of Manufacturing and Materials Processing, 2020, 4(4):101.
[15] COLLINS P C, BRICE D A, SAMIMI P, et al. Microstructural control of additively manufactured metallic materials[J]. Annual Review of Materials Research, 2016, 46:63-91.
[16] KURZ W, BEZENÇON C, GÄUMANN M. Columnar to equiaxed transition in solidification processing[J]. Science and Technology of Advanced Materials, 2001, 2(1):185-191.
[17] MOKADEM S, BEZENÇON C, HAUERT A, et al. Laser repair of superalloy single crystals with varying substrate orientations[J]. Metallurgical and Materials Transactions A, 2007, 38(7):1500-1510.
[18] BASAK A, HOLENARASIPURA RAGHU S, DAS S. Microstructures and microhardness properties of CMSX-4® additively fabricated through scanning laser epitaxy (SLE)[J]. Journal of Materials Engineering and Performance, 2017, 26(12):5877-5884.
[19] TILLER W A, JACKSON K A, RUTTER J W, et al. The redistribution of solute atoms during the solidification of metals[J]. Acta Metallurgica, 1953, 1(4):428-437.
[20] HUNT J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65(1):75-83.
[21] KURZ W, GIOVANOLA B, TRIVEDI R. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica, 1986, 34(5):823-830.
[22] GÄUMANN M, BEZENÇON C, CANALIS P, et al. Single-crystal laser deposition of superalloys:Processing-microstructure maps[J]. Acta Materialia, 2001, 49(6):1051-1062.
[23] GÄUMANN M, TRIVEDI R, KURZ W.Nucleation ahead of the advancing interface in directional solidification[J]. Materials Science and Engineering:A, 1997, 226-228:763-769.
[24] GÄUMANN M, HENRY S, CLÉTON F, et al. Epitaxial laser metal forming:Analysis of microstructure formation[J]. Materials Science and Engineering:A, 1999, 271(1-2):232-241.
[25] RAPPAZ M, DAVID S A, VITEK J M, et al. Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds[J]. Metallurgical Transactions A, 1989, 20(6):1125-1138.
[26] LIU W P, DUPONT J N. Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals[J]. Acta Materialia, 2004, 52(16):4833-4847.
[27] LIU W P, DUPONT J N. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (Part II)[J]. Acta Materialia, 2005, 53(5):1545-1558.
[28] ANDERSON T D, DUPONT J N, DEBROY T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling[J]. Acta Materialia, 2010, 58(4):1441-1454.
[29] DAVID S A, VITEK J M, RAPPAZ M, et al. Microstructure of stainless steel single-crystal electron beam welds[J]. Metallurgical Transactions A, 1990, 21(6):1753-1766.
[30] RAPPAZ M, DAVID S A, VITEK J M, et al. Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds[J]. Metallurgical Transactions A, 1990, 21(6):1767-1782.
[31] DAVID S A, VITEK J M, BOATNER L A, et al. Application of single crystals to achieve quantitative understanding of weld microstructures[J]. Materials Science and Technology, 1995, 11(9):939-948.
[32] DAVID S A, VITEK J M, BABU S S, et al. Welding of nickel base superalloy single crystals[J]. Science and Technology of Welding and Joining, 1997, 2(2):79-88.
[33] VITEK J M, DAVID S A, BOATNER L A. Microstructural development in single crystal nickel base superalloy welds[J]. Science and Technology of Welding and Joining, 1997, 2(3):109-118.
[34] PARK J W, BABU S S, VITEK J M, et al. Stray grain formation in single crystal Ni-base superalloy welds[J]. Journal of Applied Physics, 2003, 94(6):4203-4209.
[35] BABU S S, DAVID S A, PARK J W, et al. Joining of nickel base superalloy single crystals[J]. Science and Technology of Welding and Joining, 2004, 9(1):1-12.
[36] PARK J W, VITEK J M, BABU S S, et al. Stray grain formation, thermomechanical stress and solidification cracking in single crystal nickel base superalloy welds[J]. Science and Technology of Welding and Joining, 2004, 9(6):472-482.
[37] VITEK J M. The effect of welding conditions on stray grain formation in single crystal welds-theoretical analysis[J]. Acta Materialia, 2005, 53(1):53-67.
[38] LIANG Y J, CHENG X, LI J, et al. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys:New processing-microstructure maps involving powder feeding[J]. Materials & Design, 2017, 130:197-207.
[39] WANG G W, LIANG J J, YANG Y H, et al. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis[J]. Journal of Materials Science & Technology, 2018, 34(8):1315-1324.
[40] LIU Z Y, ZHU Q. Effect of pulse frequency on the columnar-to-equiaxed transition and microstructure formation in quasi-continuous-wave laser powder deposition of single-crystal superalloy[J]. Metallurgical and Materials Transactions A, 2021, 52(2):776-788.
[41] XIAO H, CHENG M P, SONG L J. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing[J]. Journal of Materials Science & Technology, 2021, 60:216-221.
[42] LIU Z Y, SHU J Y. Effect of pulse frequency on the transport phenomena and crystal growth behavior in quasi-continuous-wave laser powder deposition of single-crystal superalloy[J]. Metallurgical and Materials Transactions B, 2020, 51(6):2797-2810.
[43] WANG C, LI Q L, ZHOU X, et al. Contrastive studies between laser repairing and plasma arc repairing on single-crystal Ni-based superalloy[J]. Materials, 2019, 12(7):1172.
[44] CHURCHMAN C, BONIFAZ E A, RICHARDS N L. Comparison of single crystal Ni based superalloy repair by gas tungsten arc and electron beam processes[J]. Materials Science and Technology, 2011, 27(4):811-817.
[45] DE SOUZA PINTO PEREIRA A, VAN HOOFF C, PEREIRA M, et al. Laser metal deposition strategies for repairing flat and notched substrates made of Ni-based single crystalline superalloys[J]. Journal of Laser Applications, 2019, 31(2):022513.
[46] ROTTWINKEL B, PEREIRA A, ALFRED I, et al. Turbine blade tip single crystalline clad deposition with applied remelting passes for well oriented volume extension[J]. Journal of Laser Applications, 2017, 29(2):022310.
[47] LIU Z Y, QI H. Mathematical modeling of crystal growth and microstructure formation in multi-layer and multi-track laser powder deposition of single-crystal superalloy[J]. Physics Procedia, 2014, 56:411-420.
[48] LI L J, DECEUSTER A, ZHANG C B. Effect of process parameters on pulsed-laser repair of a directionally solidified superalloy[J]. Metallography, Microstructure, and Analysis, 2012, 1(2):92-98.
[49] CHEN H, HUANG G S, LU Y Y, et al. Epitaxial laser deposition of single crystal Ni-based superalloy:Variation of stray grains[J]. Materials Characterization, 2019, 158:109982.
[50] LIU Z Y, QI H, JIANG L. Control of crystal orientation and continuous growth through inclination of coaxial nozzle in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Processing Technology, 2016, 230:177-186.
[51] KAIERLE S, OVERMEYER L, ALFRED I, et al. Single-crystal turbine blade tip repair by laser cladding and remelting[J]. CIRP Journal of Manufacturing Science and Technology, 2017, 19:196-199.
[52] LIU Z Y, WANG Z. Effect of substrate preset temperature on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Science & Technology, 2018, 34(11):2116-2124.
[53] NIE J W, CHEN C Y, LIU L T, et al. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition[J]. Journal of Materials Science & Technology, 2021, 62:148-161.
[54] LIU Z Y, SHU J Y. Control of the microstructure formation in the near-net-shape laser additive tip-remanufacturing process of single-crystal superalloy[J]. Optics & Laser Technology, 2021, 133:106537.
[55] ROTTWINKEL B, NÖLKE C, KAIERLE S, et al. Laser cladding for crack repair of CMSX-4 single-crystalline turbine parts[J]. Lasers in Manufacturing and Materials Processing, 2017, 4(1):13-23.
[56] CHEN H, LU Y Y, LUO D, et al. Epitaxial laser deposition of single crystal Ni-based superalloys:Repair of complex geometry[J]. Journal of Materials Processing Technology, 2020, 285:116782.
[57] LIU Z Y, QI H. Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Processing Technology, 2015, 216:19-27.
[58] WANG G W, LIANG J J, ZHOU Y Z, et al. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition[J]. Journal of Materials Science & Technology, 2018, 34(4):732-735.
[59] WANG G W, LIANG J J, ZHOU Y Z, et al. Effects of substrate crystallographic orientations on microstructure in laser surface-melted single-crystal superalloy:Theoretical analysis[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8):763-773.
[60] WANG L, WANG N, YAO W J, et al. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys[J]. Acta Materialia, 2015, 88:283-292.
[61] WANG L, WANG N. Effect of substrate orientation on the formation of equiaxed stray grains in laser surface remelted single crystal superalloys:Experimental investigation[J]. Acta Materialia, 2016, 104:250-258.
[62] LIU Z Y, QI H. Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy[J]. Acta Materialia, 2015, 87:248-258.
[63] GUO J C, RONG P, WANG L, et al. A comparable study on stray grain susceptibilities on different crystallographic planes in single crystal superalloys[J]. Acta Materialia, 2021, 205:116558.
[64] GUO J C, CHEN W J, YANG R N, et al. The effect of substrate orientation on stray grain formation in the (111) plane in laser surface remelted single crystal superalloys[J]. Journal of Alloys and Compounds, 2019, 800:240-246.
[65] VITEK J M, DAVID S A, BABU S S. Optimization of weld conditions and alloy composition for welding of single-crystal nickel-based superalloys[J]. Materials Science Forum, 2007, 539-543:3082-3087.
[66] REED R C, TAO T, WARNKEN N. Alloys-By-Design:Application to nickel-based single crystal superalloys[J]. Acta Materialia, 2009, 57(19):5898-5913.
[67] HORST O M, ADLER D, GIT P, et al. Exploring the fundamentals of Ni-based superalloy single crystal (SX) alloy design:Chemical composition vs. microstructure[J]. Materials & Design, 2020, 195:108976.
[68] HORST O M, IBRAHIMKHEL S, STREITBERGER J, et al. On the influence of alloy composition on creep behavior of Ni-based single-crystal superalloys (SXs)[M]//Superalloys 2020. Cham:Springer International Publishing, 2020:60-70.
[69] 张健, 王莉, 王栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9):1077-1094. ZHANG J, WANG L, WANG D, et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9):1077-1094(in Chinese).
[70] MUKHERJEE T, DEBROY T. A digital twin for rapid qualification of 3D printed metallic components[J]. Applied Materials Today, 2019, 14:59-65.
[71] RAMSPERGER M, SINGER R F, KÖRNER C. Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting[J]. Metallurgical and Materials Transactions A, 2016, 47(3):1469-1480.
[72] PARSA A, RAMSPERGER M, KOSTKA A, et al. Transmission electron microscopy of a CMSX-4 Ni-base superalloy produced by selective electron beam melting[J]. Metals, 2016, 6(11):258.
[73] CATCHPOLE-SMITH S, ABOULKHAIR N, PARRY L, et al. Fractal scan strategies for selective laser melting of 'unweldable' nickel superalloys[J]. Additive Manufacturing, 2017, 15:113-122.
[74] KÖRNER C, RAMSPERGER M, MEID C, et al. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing[J]. Metallurgical and Materials Transactions A, 2018, 49(9):3781-3792.
[75] BVRGER D, PARSA A B, RAMSPERGER M, et al. Creep properties of single crystal Ni-base superalloys (SX):A comparison between conventionally cast and additive manufactured CMSX-4 materials[J]. Materials Science and Engineering:A, 2019, 762:138098.
[76] GOTTERBARM M R, SEIFI M, MELZER D, et al. Small scale testing of IN718 single crystals manufactured by EB-PBF[J]. Additive Manufacturing, 2020, 36:101449.
[77] CHAUVET E, TASSIN C, BLANDIN J J, et al. Producing Ni-base superalloys single crystal by selective electron beam melting[J]. Scripta Materialia, 2018, 152:15-19.
[78] GOTTERBARM M R, RAUSCH A M, KÖRNER C. Fabrication of single crystals through a μ-helix grain selection process during electron beam metal additive manufacturing[J]. Metals, 2020, 10(3):313.
[79] YANG J J, LI F Z, PAN A Q, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting[J]. Journal of Alloys and Compounds, 2019, 808:151740.
[80] ROEHLING T T, WU S S Q, KHAIRALLAH S A, et al. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing[J]. Acta Materialia, 2017, 128:197-206.
[81] SHI R P, KHAIRALLAH S A, ROEHLING T T, et al. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy[J]. Acta Materialia, 2020, 184:284-305.
[82] ACHARYA R, BANSAL R, GAMBONE J J, et al. A coupled thermal, fluid flow, and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part I)[J]. Metallurgical and Materials Transactions B, 2014, 45(6):2247-2261.
[83] ACHARYA R, BANSAL R, GAMBONE J J, et al. A microstructure evolution model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part II)[J]. Metallurgical and Materials Transactions B, 2014, 45(6):2279-2290.
[84] BASAK A, ACHARYA R, DAS S. Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy:Computational modeling, experimental process development, and process parameter optimization[J]. Metallurgical and Materials Transactions A, 2016, 47(8):3845-3859.
[85] BASAK A, DAS S. Additive manufacturing of nickel-base superalloy rené N5 through scanning laser epitaxy (SLE)-material processing, microstructures, and microhardness properties[J]. Advanced Engineering Materials, 2017, 19(3):1600690.
[86] ACHARYA R, BANSAL R, GAMBONE J J, et al. Additive manufacturing and characterization of rené 80 superalloy processed through scanning laser epitaxy for turbine engine hot-section component repair[J]. Advanced Engineering Materials, 2015, 17(7):942-950.
[87] BASAK A, ACHARYA R, DAS S. Epitaxial deposition of nickel-based superalloy René 142 through scanning laser epitaxy (SLE)[J]. Additive Manufacturing, 2018, 22:665-671.
[88] ROSENTHAL D. The theory of moving source of heat and its application to metal treatments[J]. Transactions of the ASME, 1946, 11:849-866.
[89] WEI H L, MUKHERJEE T, ZHANG W, et al. Mechanistic models for additive manufacturing of metallic components[J]. Progress in Materials Science, 2021, 116:100703.
[90] WANG G W, LIANG J J, ZHOU Y Z, et al. Prediction of dendrite orientation and stray grain distribution in laser surface-melted single crystal superalloy[J]. Journal of Materials Science & Technology, 2017, 33(5):499-506.
[91] SHAMSAEI N, YADOLLAHI A, BIAN L K, et al. An overview of direct laser deposition for additive manufacturing; Part II:Mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015, 8:12-35.
[92] THOMPSON S M, BIAN L K, SHAMSAEI N, et al. An overview of direct laser deposition for additive manufacturing; part I:Transport phenomena, modeling and diagnostics[J]. Additive Manufacturing, 2015, 8:36-62.
[93] BIDARE P, BITHARAS I, WARD R M, et al. Fluid and particle dynamics in laser powder bed fusion[J]. Acta Materialia, 2018, 142:107-120.
[94] ZHANG P Y, ZHOU X, CHENG X, et al. Elucidation of bubble evolution and defect formation in directed energy deposition based on direct observation[J]. Additive Manufacturing, 2020, 32:101026.
[95] DU D F, DONG A P, DA SHU, et al. Influence of static magnetic field on the microstructure of nickel-based superalloy by laser-directed energy deposition[J]. Metallurgical and Materials Transactions A, 2020, 51(7):3354-3359.
[96] LI X, GAGNOUD A, FAUTRELLE Y, et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Materialia, 2012, 60(8):3321-3332.
[97] MIRAPEIX J, RUIZ-LOMBERA R, VALDIANDE J J, et al. Defect detection with CCD-spectrometer and photodiode-based arc-welding monitoring systems[J]. Journal of Materials Processing Technology, 2011, 211(12):2132-2139.
[98] STUTZMAN C B, NASSAR A R, REUTZEL E W. Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality[J]. Additive Manufacturing, 2018, 21:333-339.
[99] EVERTON S K, HIRSCH M, STRAVROULAKIS P, et al. Review of in situ process monitoring and in situ metrology for metal additive manufacturing[J]. Materials & Design, 2016, 95:431-445.
[100] ZHANG K, LIU T T, LIAO W H, et al. Photodiode data collection and processing of molten pool of alumina parts produced through selective laser melting[J]. Optik, 2018, 156:487-497.
[101] ROTTWINKEL B, NÖLKE C, KAIERLE S, et al. Crack repair of single crystal turbine blades using laser cladding technology[J]. Procedia CIRP, 2014, 22:263-267.
[102] HUARTE-MENDICOA L, PENARANDA X, LAMIKIZ A, et al. Experimental microstructure evaluation of rene 80 in laser cladding[J]. Lasers in Manufacturing and Materials Processing, 2019, 6(3):317-331.
[103] BANSAL R. Analysis and feedback control of the scanning laser epitaxy process applied to nickel-base superalloys[D]. Georgia:Georgia Institute of Technology, 2013
[104] DEBROY T, MUKHERJEE T, WEI H L, et al. Metallurgy, mechanistic models and machine learning in metal printing[J]. Nature Reviews Materials, 2021, 6(1):48-68.
[105] LAMM M, SINGER R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483[J]. Metallurgical and Materials Transactions A, 2007, 38(6):1177-1183.
[106] LIANG Y J, LI A, CHENG X, et al. Prediction of primary dendritic arm spacing during laser rapid directional solidification of single-crystal nickel-base superalloys[J]. Journal of Alloys and Compounds, 2016, 688:133-142.
[107] CI S W, LIANG J J, LI J G, et al. Prediction of primary dendrite arm spacing in pulsed laser surface melted single crystal superalloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4):485-494.
[108] LU N N, LEI Z L, HU K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition[J]. Additive Manufacturing, 2020, 34:101228.
[109] LOPEZ-GALILEA I, RUTTERT B, HE J Y, et al. Additive manufacturing of CMSX-4 Ni-base superalloy by selective laser melting:Influence of processing parameters and heat treatment[J]. Additive Manufacturing, 2019, 30:100874.
[110] RAMSPERGER M, MÚJICA RONCERY L, LOPEZ-GALILEA I, et al. Solution heat treatment of the single crystal nickel-base superalloy CMSX-4 fabricated by selective electron beam melting[J]. Advanced Engineering Materials, 2015, 17(10):1486-1493.
[111] NIE P L, OJO O A, LI Z G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J]. Acta Materialia, 2014, 77:85-95.
[112] CI S W, LIANG J J, LI J G, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. Journal of Materials Science & Technology, 2020, 45:23-34.
[113] HENDERSON M B, ARRELL D, LARSSON R, et al. Nickel based superalloy welding practices for industrial gas turbine applications[J]. Science and Technology of Welding and Joining, 2004, 9(1):13-21.
[114] RAPPAZ M, DREZET J M, GREMAUD M. A new hot-tearing criterion[J]. Metallurgical and Materials Transactions A, 1999, 30(2):449-455.
[115] KOU S. A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88:366-374.
[116] LI Y, CHEN K, TAMURA N. Mechanism of heat affected zone cracking in Ni-based superalloy DZ125L fabricated by laser 3D printing technique[J]. Materials & Design, 2018, 150:171-181.
[117] WANG N, MOKADEM S, RAPPAZ M, et al. Solidification cracking of superalloy single- and bi-crystals[J]. Acta Materialia, 2004, 52(11):3173-3182.
[118] RONG P, WANG N, WANG L, et al. The influence of grain boundary angle on the hot cracking of single crystal superalloy DD6[J]. Journal of Alloys and Compounds, 2016, 676:181-186.
[119] ZHOU Z P, HUANG L, SHANG Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing[J]. Materials & Design, 2018, 160:1238-1249.
[120] ZHOU Z P, LEI Q, YAN Z, et al. Effects of process parameters on microstructure and cracking susceptibility of a single crystal superalloy fabricated by directed energy deposition[J]. Materials & Design, 2021, 198:109296.
[121] CHANDRA S, TAN X P, NARAYAN R L, et al. A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting[J]. Additive Manufacturing, 2021, 37:101633.
[122] CHAUVET E, KONTIS P, JÄGLE E A, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting[J]. Acta Materialia, 2018, 142:82-94.
[123] KONTIS P, CHAUVET E, PENG Z R, et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys[J]. Acta Materialia, 2019, 177:209-221.
[124] CHEN Y, LU F G, ZHANG K, et al. Investigation of dendritic growth and liquation cracking in laser melting deposited inconel 718 at different laser input angles[J]. Materials & Design, 2016, 105:133-141.
[125] HARRISON N J, TODD I, MUMTAZ K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting:A fundamental alloy design approach[J]. Acta Materialia, 2015, 94:59-68.
[126] ZHOU X, WANG D Z, LIU X H, et al. 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT[J]. Acta Materialia, 2015, 98:1-16.
[127] OLIVEIRA J P, LALONDE A D, MA J. Processing parameters in laser powder bed fusion metal additive manufacturing[J]. Materials & Design, 2020, 193:108762.
[128] CI S W, LIANG J J, LI J G, et al. Microstructure and stress-rupture property of DD32 nickel-based single crystal superalloy fabricated by additive manufacturing[J]. Journal of Alloys and Compounds, 2021, 854:157180.
[129] ZHANG P Y, ZHOU X, WANG X D, et al. Study on the microstructural degradation and rejuvenation heat treatment of directionally solidified turbine blades[J]. Journal of Alloys and Compounds, 2020, 829:154474.
[130] CHEN K, HUANG R Q, LI Y, et al. Rafting-enabled recovery avoids recrystallization in 3D-printing-repaired single-crystal superalloys[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(12):e1907164.
[131] GASSER A, BACKES G, KELBASSA I, et al. Laser additive manufacturing[J]. Laser Technik Journal, 2010, 7(2):58-63.
[132] ASCHENBRUCK J, ADAMCZUK R, SEUME J R. Recent progress in turbine blade and compressor blisk regeneration[J]. Procedia CIRP, 2014, 22:256-262.
文章导航

/