以某型民机大涵道比风扇增压级为研究对象,在不同转速和不同内涵工况下开展数值研究,归纳了内涵工况对外涵特性的影响规律。结果显示内涵工况移向近喘点时,外涵裕度降低,风扇近堵流量减小;掌握了获取外涵特性过程中内涵气动特性的变化规律:外涵逼喘时,内涵流量、总压比和效率始终呈现逐渐增大的趋势,而且转速越高,流量增大越明显;最终阐明了获取外涵特性时的双涵匹配机理,其本质上取决于风扇的总压比-流量特性以及内外涵流量再分配机制的共同作用。
A numerical investigation was carried out on a high bypass ratio fan booster of a civil-aircraft engine at different rotating speeds under core working conditions. The influence of core working conditions on the bypass characteristics was summarized. Results showed that the bypass surge margin and near-choke mass flow of the fan are reduced as the core condition goes to the near surge point. During the process of obtaining bypass characteristics, the change rule of core aerodynamic performance was grasped as follows:the mass flow, pressure ratio and efficiency of the core get increased as the bypass condition goes to the near surge point, and the core mass flow grows more as the rotating speed is higher. Furthermore, during the process of obtaining bypass characteristics, the twin-duct matching mechanism was clarified, which is essentially determined by the fan characteristic of total pressure ratio and mass flow, as well as the redistribution of mass flow between the core and bypass.
[1] 陈懋章,刘宝杰.风扇/压气机气动设计技术发展趋势:用于大型客机的大涵道比涡扇发动机[J].航空动力学报, 2008, 23(6):961-975. CHEN M Z, LIU B J. Fan/compressor aero design trend and challenge on the development of high bypass ratio turbofan[J]. Journal of Aerospace Power, 2008,23(6):961-975(in Chinese).
[2] 陈云永,杨小贺,卫飞飞.大涵道比风扇设计技术发展趋势[J].航空学报, 2017, 38(9):520953. CHEN Y Y, YANG X H, WEI F F. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):520953(in Chinese).
[3] SINGH R. Fifty years of civil aero gas turbines[J]. Aircraft Engineering and Aerospace Technology, 1996, 68(4):3-19.
[4] DAWES W N. Multi-blade row navier-stokes simulations of fan-bypass configurations:91-GT-148[R]. New York:ASME, 1991.
[5] 赵永辉.涡扇发动机风扇及内外涵道匹配的数值分析[D].北京:中国科学院工程热物理研究所, 2005. ZHAO Y H. Numerical analysis on matching between internal and external bypass and fan of aero-engine[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2005(in Chinese).
[6] BRILLIANT L, BALAMUCKI S, BURGER G, et al. Application of multistage CFD analysis to low pressure compressor design:GT2004-54263[R]. New York:ASME, 2004.
[7] ADAMCZYK J J. Aerodynamic analysis of multistage turbomachinery flows in support of aerodynamic design[J]. Journal of Turbomachinery, 2000, 122(2):189-217.
[8] HORLOCK J H, DENTON J D. A review of some early design practice using computational fluid dynamics and a current perspective[J]. Journal of Turbomachinery, 2005, 127(1):5-13.
[9] 李晓娟,金海良,桂幸民.风扇/增压级内外涵联算的特性数值模拟[J].航空动力学报, 2009, 24(12):2719-2726. LI X J, JIN H L, GUI X M. Performance numerical investigation of double-channel fan/compressor[J]. Journal of Aerospace Power, 2009, 24(12):2719-2726(in Chinese).
[10] 李晓娟,桂幸民.风扇/增压级设计与非设计性能数值模拟[J].推进技术, 2005, 26(6):522-525. LI X J, GUI X M. Numerical simulation of fan/compressor design and off-design performance[J]. Journal of Propulsion Technology, 2005, 26(6):522-525(in Chinese).
[11] 万科,朱芳,金东海,等.周向平均方法在某风扇/增压级分析中的应用[J].航空学报, 2014, 35(1):132-140. WAN K, ZHU F, JIN D H, et al. Application of circumferentially averaged method in fan/booster[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):132-140(in Chinese).
[12] 丁建国,胡骏.某掠形跨声风扇设计与数值模拟[J].航空动力学报, 2007, 22(1):54-59. DING J G, HU J. Design and numerical simulation of a transonic swept fan[J]. Journal of Aerospace Power, 2007,22(1):54-59(in Chinese).
[13] 赵威程.大涵道比风扇、增压级三维设计及性能研究[D].哈尔滨:哈尔滨工程大学, 2018. ZHAO W C. The three-dimensional design and performance investigation on high bypass ratio fan and booster[D]. Harbin:Harbin Engineering University, 2018(in Chinese).
[14] 李晓娟,桂幸民.风扇/增压级带间隙三维粘性流场数值模拟[J].北京航空航天大学学报, 2006, 32(1):4-7. LI X J, GUI X M. Numerical simulation of three dimension viscous flow of fan/compressor with tip clearance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(1):4-7(in Chinese).
[15] 陈云永,万科,杨小贺,等.大涵道比风扇/增压级叶尖间隙影响研究[J].航空学报, 2017, 38(9):520951. CHEN Y Y, WAN K, YANG X H, et al. Influence of tip clearance on high-bypass-ratio fan/booster[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):520951(in Chinese).
[16] 万科,杨小贺,丁建国.风扇/增压级端区流动优化设计研究[J].燃气轮机技术, 2018, 31(4):53-58. WAN K, YANG X H, DING J G. Optimization design and research of endwall flow in high-bypass-ratio fan/booster[J].Gas Turbine Technology, 2018, 31(4):53-58(in Chinese).
[17] 刘晓锋,刘世文,杨小贺,等.某大涵道比风扇轮毂型线数值计算[J].航空发动机, 2018, 44(4):26-33. LIU X F, LIU S W, YANG X H, et al. Numerical calculation of hub-shape contouring on a high bypass ratio engine fan[J]. Aeroengine, 2018, 44(4):26-33(in Chinese).
[18] 朱芳,陈云永,卫飞飞,等.某民用大涵道比涡扇发动机风扇缩尺试验件气动性能数值仿真[J].航空动力学报, 2013, 28(7):1539-1548. ZHU F, CHEN Y Y, WEI F F, et al. Numerical simulation of aerodynamic performance of scaled fan of a civil high-bypass-ratio turbofan engine[J]. Journal of Aerospace Power, 2013, 28(7):1539-1548(in Chinese).
[19] 顾明皓,桂幸民.低雷诺数效应对某型风扇的性能影响及改进方案研究[J].航空动力学报, 2004, 19(4):438-443. GU M H, GUI X M. Low-Re number effects on the performance of some fans and the modified design[J]. Journal of Aerospace Power, 2004,19(4):438-443(in Chinese).
[20] 桂幸民,李晓娟.基于低雷诺数条件的风扇/增压级气动设计[J].燃气涡轮试验与研究, 2007, 20(3):18-22. GUI X M, LI X J. Aerodynamic design of fan/compressor operated at low Reynolds number[J]. Gas Turbine Experiment and Research, 2007, 20(3):18-22(in Chinese).