论文

水导激光加工CFRP深槽微观形貌特性

  • 张旖诺 ,
  • 乔红超 ,
  • 曹治赫 ,
  • 梁金盛 ,
  • 赵吉宾
展开
  • 1. 中国科学院 沈阳自动化研究所 机器人学国家重点实验室, 沈阳 110016;
    2. 中国科学院 机器人与智能制造创新研究院, 沈阳 110169;
    3. 中国科学院大学, 北京 100049

收稿日期: 2020-12-22

  修回日期: 2021-02-10

  网络出版日期: 2021-05-20

基金资助

国家自然科学基金(51875558)

Microstructure characteristics of CFRP deep groove processed by water jet-guided laser processing technology

  • ZHANG Yinuo ,
  • QIAO Hongchao ,
  • CAO Zhihe ,
  • LIANG Jinsheng ,
  • ZHAO Jibin
Expand
  • 1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2. Institute for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-12-22

  Revised date: 2021-02-10

  Online published: 2021-05-20

Supported by

National Natural Science Foundation of China (51875558)

摘要

碳纤维增强塑料(CFRP)中树脂基体和纤维增强相两种异质材料的性能存在巨大差异,使得其在航空航天领域的广泛应用受到现有加工能力的制约。因此,具有热损伤小、加工深度能力强等优势的水导激光加工技术在特种加工领域展现出优越的加工能力。基于有限元法中的单元生死技术,建立了水导激光加工非均质纤维树脂基体的三维瞬态温度场模型。在该模型下,利用双向循环扫描的加工方式对切面的微观形貌进行仿真与实验研究。研究表明:水导激光加工时水射流对材料的强对流换热效果显著,使材料的去除率和排屑率保持在一个较高的水平。在深槽加工时,铺层为90°的表层碳纤维会出现断裂现象,这成为断面损伤的主要来源。通过对切面不同侧边、不同深度的表面形貌进行分析,认为水射流高效的排屑率是实现水导激光高精度加工的关键因素。因此,改变扫描深宽比能有效减少深槽处的纤维损伤,切面可以获得较小的粗糙度和锥度。当扫描深宽比减少一倍时,损伤区域缩小46%。

本文引用格式

张旖诺 , 乔红超 , 曹治赫 , 梁金盛 , 赵吉宾 . 水导激光加工CFRP深槽微观形貌特性[J]. 航空学报, 2022 , 43(4) : 525144 -525144 . DOI: 10.7527/S1000-6893.2021.25144

Abstract

Carbon Fiber-Reinforced Plastics (CFRP) composites have a huge difference in the properties of resin matrix and fiber reinforced phase, and its application in the aerospace field is restricted by the existing processing technologies. Therefore, the water jet-guided laser technology which has the advantages of small thermal damage and strong processing depth shows superior capabilities in the field of special processing. Based on the "element birth and death" technique in the finite element method, this paper establishes the three-dimensional model for transient temperature field of heterogeneous fiber matrix. Using this model, the micro-topography of the cross-section was simulated and experimentally studied by bidirectional cyclic scanning. Research shows that the strong convective heat transfer effect of the water jet on the material during water jet-guided laser processing is significant, which allows the material removal rate and chip removal rate remain at a high level. During deep groove processing, rupture occurred on the surface layer of carbon fiber with 90°, which becomes the main source of section damage. Analysis of the surface morphology of different surfaces and depths of the cross-section shows that the efficient chip removal rate of the water jet is the key factor for high-precision processing. As a result, changing the scanning depth-width ratio can effectively reduce the fiber damage in the deep groove, and can obtain smaller roughness and taper in the cross-section. When the scanning aspect ratio was reduced by half, the damaged area was reduced by 46%.

参考文献

[1] 王卫泽, 方焕杰, 黄继波. 防CMAS腐蚀热障涂层开裂的研究现状[J]. 表面技术, 2018, 47(8):23-29. WANG W Z, FANG H J, HUANG J B. Research status on cracking of thermal barrier coatings against CMAS corrosion[J]. Surface Technology, 2018, 47(8):23-29(in Chinese).
[2] 崔文斌, 陈煊, 陈超, 等. CFRP超高周疲劳损伤演化过程[J]. 航空学报, 2020, 41(1):223212. CUI W B, CHEN X, CHEN C, et al. Damage evolution process of CFRP in very high cycle fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):223212(in Chinese).
[3] 罗希延, 赵荣国, 蒋永洲, 等. 航空发动机涡轮盘用GH4133B合金常温力学性能统计分析[J]. 机械工程学报, 2010, 46(22):75-83. LUO X Y, ZHAO R G, JIANG Y Z, et al. Statistical analysis on mechanical properties of GH4133B superalloy used in turbine disk of aero-engine at ambient temperature[J]. Journal of Mechanical Engineering, 2010, 46(22):75-83(in Chinese).
[4] 邹世钦, 张长瑞, 周新贵, 等. 连续纤维增强陶瓷基复合材料在航空发动机上的应用[J]. 航空发动机, 2005, 31(3):55-58. ZOU S Q, ZHANG C R, ZHOU X G, et al. Application of continuous fiber reinforced ceramic matrix composites in aeroengine[J]. Aeroengine, 2005, 31(3):55-58(in Chinese).
[5] 魏莹莹, 安庆龙, 蔡晓江, 等. 碳纤维复合材料超声扫描分层检测及评价方法[J]. 航空学报, 2016, 37(11):3512-3519. WEI Y Y, AN Q L, CAI X J, et al. CFRP ultrasonic scan delamination detection and evaluation method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3512-3519(in Chinese).
[6] GOEKE A, EMMELMANN C. Influence of laser cutting parameters on CFRP part quality[J]. Physics Procedia, 2010, 5:253-258.
[7] MISHRA S, YADAVA V. Prediction of hole characteristics and hole productivity during pulsed Nd:YAG laser beam percussion drilling[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2013, 227(4):494-507.
[8] 李琳琳. 碳纤维增强树脂基复合材料飞秒激光加工工艺基础研究[D]. 哈尔滨:哈尔滨工业大学, 2020. LI L L. Basic research on femtosecond laser processing technology of carbon fiber reinforced resin matrix composites[D]. Harbin:Harbin Institute of Technology, 2020(in Chinese).
[9] 章辰. 水射流辅助激光切割碳纤维复合材料的研究[D]. 无锡:江南大学, 2018. ZHANG C. Experimental study on water jet assisted laser cutting of carbon fiber reinforced polymer composite[D]. Wuxi:Jiangnan University, 2018(in Chinese).
[10] KALYANASUNDARAM D, SHEHATA G, NEUMANN C, et al. Design and validation of a hybrid laser/water-jet machining system for brittle materials[J]. Journal of Laser Applications, 2008, 20(2):127-134.
[11] FENG S C, HUANG C Z, WANG J, et al. Investigation and modelling of hybrid laser-waterjet micromachining of single crystal SiC wafers using response surface methodology[J]. Materials Science in Semiconductor Processing, 2017, 68:199-212.
[12] YANG C M, JIANG T, YU Y Q, et al. Study on surface quality of wood processed by water-jet assisted nanosecond laser[J]. BioResources, 2018, 13(2):3125-3134.
[13] BARCIKOWSKI S, KOCH G, ODERMATT J. Characterisation and modification of the heat affected zone during laser material processing of wood and wood composites[J]. Holz Als Roh-Und Werkstoff, 2006, 64(2):94-103.
[14] KILICKAP E. Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite[J]. Expert Systems With Applications, 2010, 37(8):6116-6122.
[15] 陈林根, 冯辉君. 流动和传热传质过程的多目标构形优化[M]. 北京:科学出版社, 2017. CHEN L G, FENG H J. Multi-objective configuration optimization for flow and heat and mass transfer processes[M]. Beijing:Science Press, 2017(in Chinese).
[16] NEGARESTANI R, SUNDAR M, SHEIKH M A, et al. Numerical simulation of laser machining of carbon-fibre-reinforced composites[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2010, 224(7):1017-1027.
[17] OHKUBO T, TSUKAMOTO M, SATO Y. Numerical simulation of laser beam cutting of carbon fiber reinforced plastics[J]. Physics Procedia, 2014, 56:1165-1170.
[18] BOLEY C D, RUBENCHIK A M. Modeling of laser interactions with composite materials[J]. Applied Optics, 2013, 52(14):3329-3337.
[19] ZHANG Y N, QIAO H C, ZHAO J B, et al. Numerical simulation of water jet-guided laser micromachining of CFRP[J]. Materials Today Communications, 2020, 25:101456.
[20] ZHANG Y N, QIAO H C, ZHAO J B, et al. Research on the mechanism of micro-water jet-guided laser precision drilling in metal sheet[J]. Micromachines, 2021, 12(3):343.
[21] SHENG P, CHRYSSOLOURIS G. Theoretical model of laser grooving for composite materials[J]. Journal of Composite Materials, 1995, 29(1):96-112.
[22] LIU X, LIENHARD J H V, LOMBARA J S. Convective heat transfer by impingement of circular liquid jets[J]. Journal of Heat Transfer, 1991, 113(3):571-582.
[23] GABOUR L A. Heat transfer to turbulent and splattering impinging liquid jets[D]. Cambridge:Massachusetts Institute of Technology, 1991.
[24] LI C F, JOHNSON D B, KOVACEVIC R. Modeling of waterjet guided laser grooving of silicon[J]. International Journal of Machine Tools and Manufacture, 2003, 43(9):925-936.
[25] 詹才娟, 李昌烽, 潘永琛, 等. 微水射流导引激光精密打孔过程的流动分析[J]. 力学季刊, 2011, 32(2):159-165. ZHAN C J, LI C F, PAN Y C, et al. Analysis of fluid flow in micro-waterjet guided laser precision drilling process[J]. Chinese Quarterly of Mechanics, 2011, 32(2):159-165(in Chinese).
[26] KMEC J, GOMBÁR M, HARNI AČG ÁROVÁ M, et al. The predictive model of surface texture generated by abrasive water jet for austenitic steels[J]. Applied Sciences, 2020, 10(9):3159.
[27] 徐合兵. 机织碳纤维复合材料短脉冲激光铣削的实验研究与数值模拟[D]. 上海:上海交通大学, 2017. XU H B. Experimental research and numerical simulation on the woven CFRP short pulsed laser milling[D]. Shanghai:Shanghai Jiao Tong University, 2017(in Chinese).
[28] 于冬洋. 单层碳纤维复合材料激光切割过程的数值模拟[D]. 大连:大连理工大学, 2017. YU D Y. Numerical simulation of laser cutting process of single-layer carbon fiber reinforced plastics[D]. Dalian:Dalian University of Technology, 2017(in Chinese).
文章导航

/