综述

智能反射面辅助的未来无线通信:现状与展望

  • 朱政宇 ,
  • 王梓晅 ,
  • 徐金雷 ,
  • 王忠勇 ,
  • 王宁 ,
  • 郝万明
展开
  • 1. 郑州大学 信息工程学院, 郑州 450001;
    2. 郑州大学 河南先进技术研究院, 郑州 450001;
    3. 宁夏大学 宁夏光伏材料重点实验室, 银川 750021

收稿日期: 2020-11-26

  修回日期: 2021-01-05

  网络出版日期: 2021-02-24

基金资助

国家自然科学基金(61801434,61801435,61771431,U1736107);河南省科技攻关计划项目(192102310178);郑州市重大科技创新专项(2019CXZX0037);国家重点研发计划(2019QY0302,2019YFB1803200)

Future wireless communication assisted by intelligent reflecting surface: State of art and prospects

  • ZHU Zhengyu ,
  • WANG Zixuan ,
  • XU Jinlei ,
  • WANG Zhongyong ,
  • WANG Ning ,
  • HAO Wanming
Expand
  • 1. School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China;
    3. Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yinchuan 750021, China

Received date: 2020-11-26

  Revised date: 2021-01-05

  Online published: 2021-02-24

Supported by

National Natural Science Foundation of China (61801434, 61801435, 61771431, U1736107);The Science and Technology Research Project of Henan Province (192102310178);Zhengzhou Major Science and Technology Innovation Special Project (2019CXZX0037);National Key R&D Program of China (2019QY0302, 2019YFB1803200)

摘要

随着元材料和元表面等相关研究的进一步发展,智能反射面(IRS)的概念被提出。IRS利用集成在平面上的大量无源反射元件通过软件编程智能地配置无线传播环境,从而达到提高无线通信系统性能的目的,相对于传统的中继系统具有成本低、功耗低、易部署等特点。因此,IRS及IRS辅助无线通信是未来通信领域发展的重要技术之一。通过对现有IRS研究现状的调查和整理,从IRS的基本概念、发展历程、特性优势和IRS辅助无线通信的基本概念、研究方向等方面,详细介绍了IRS与IRS辅助无线通信的发展与应用。最后对IRS未来的发展进行展望。

本文引用格式

朱政宇 , 王梓晅 , 徐金雷 , 王忠勇 , 王宁 , 郝万明 . 智能反射面辅助的未来无线通信:现状与展望[J]. 航空学报, 2022 , 43(2) : 25014 -025014 . DOI: 10.7527/S1000-6893.2021.25014

Abstract

With the further development of related research on metamaterials and metasurfaces, the concept of Intelligent Reflecting Surface (IRS) was proposed. IRS uses a large number of passive reflective elements integrated on the plane to intelligently configure the wireless propagation environment through software programming, so as to improve the performance of the wireless communication system. Compared with the traditional relay base station, IRS has the advantages of low cost, low power consumption and easy deployment. Therefore, IRS and IRS-assisted wireless communication are one of the important technologies in the future development of the communication field. By investigating and sorting out the current status of IRS research, the development and applications of IRS and IRS-assisted wireless communication are introduced in terms of the basic concepts, development history, characteristics and advantages of IRS, and the basic concepts and research directions of IRS-assisted wireless communication. Future development of IRS is also discussed.

参考文献

[1] YOU X H, WANG C X, HUANG J, et al. Towards 6G wireless communication networks:Vision, enabling technologies, and new paradigm shifts[J].Science China Information Sciences, 2020, 64(1):1-74.
[2] 王兆瑞, 刘亮, 李航, 等. 面向6G物联网的智能反射表面设计[J].物联网学报, 2020, 4(2):84-95. WANG Z R, LIU L, LI H, et al. Intelligent reflecting surface design for 6G-assisted Internet of Things[J].Chinese Journal on Internet of Things, 2020, 4(2):84-95(in Chinese).
[3] 陶琴, 钟财军, 张朝阳. 面向无源物联网的环境反向散射通信技术[J].物联网学报, 2019, 3(2):28-34. TAO Q, ZHONG C J, ZHANG Z Y. Ambient backscatter communications technology for batteryless IoT[J].Chinese Journal on Internet of Things, 2019, 3(2):28-34(in Chinese).
[4] 张平, 牛凯, 田辉, 等. 6G移动通信技术展望[J].通信学报, 2019, 40(1):141-148. ZHANG P, NIU K, TIAN H, et al. Technology prospect of 6G mobile communications[J].Journal on Communications, 2019, 40(1):141-148(in Chinese).
[5] ZHAO J. A survey of intelligent reflecting surfaces (IRSs):Towards 6G wireless communication networks[DB/OL]. arXiv preprint:1907.04789,2019.
[6] KUDATHANTHIRIGE D, GUNASINGHE D, AMARASURIYA G. Performance analysis of intelligent reflective surfaces for wireless communication[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020:1-6.
[7] 姚建文, 王楠. 智能反射面:大有前景的6G技术[J].电信快报, 2020(7):8-13. YAO J W, WANG N. Intelligent reflecting surface:A promising technique for 6G[J].Telecommunications Information, 2020(7):8-13(in Chinese).
[8] 王公仆, 熊轲, 刘铭, 等. 反向散射通信技术与物联网[J].物联网学报, 2017, 1(1):67-75. WANG G P, XIONG K, LIU M, et al. Backscatter communication technology and Internet of Things[J].Chinese Journal on Internet of Things, 2017, 1(1):67-75(in Chinese).
[9] 伍明江, 类先富, 李里, 等. 面向6G物联网的主被动互惠传输关键技术[J].物联网学报, 2020, 4(1):45-51. WU M J, LEI X F, LI L, et al. Key technologies of symbiotic transmission for 6G Internet of Things[J].Chinese Journal on Internet of Things, 2020, 4(1):45-51(in Chinese).
[10] ZOU Y Z, GONG S M, XU J, et al. Wireless powered intelligent reflecting surfaces for enhancing wireless communications[J].IEEE Transactions on Vehicular Technology, 2020, 69(10):12369-12373.
[11] LI L X, SUN Y, CHENG Q Q, et al. Optimal trajectory and downlink power control for multi-type UAV aerial base stations[J].Chinese Journal of Aeronautics, 2021, 34(9):11-23.
[12] 刘海涛, 顾新宇, 方晓钰, 等. 频率选择性衰落信道DS-CDMA无人机中继通信系统航迹规划[J].航空学报, 2019, 40(7):322633. LIU H T, GU X Y, FANG X Y, et al. Path panning for UAV relay communication systems with DS-CDMA over frequency selective fading channel[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322633(in Chinese).
[13] 李振亚, 竺小松, 尹成友, 等. 基于角度分集的机载超宽带MIMO天线设计[J].航空学报, 2019, 40(5):322552. LI Z Y, ZHU X S, YIN C Y, et al. Design of airborne ultra wideband MIMO antenna based on angle diversity[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(5):322552(in Chinese).
[14] JIA H C, ZHONG J, JANARDHANAN M N, et al. Ergodic capacity analysis for FSO communications with UAV-equipped IRS in the presence of pointing error[C]//2020 IEEE 20th International Conference on Communication Technology (ICCT). Piscataway:IEEE Press, 2020:949-954.
[15] LEE S H, CHOI M, KIM T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J].Nature Materials, 2012, 11(11):936-941.
[16] YANG H H, CAO X Y, YANG F, et al. A programmable metasurface with dynamic polarization, scattering and focusing control[J].Scientific Reports, 2016, 6:35692.
[17] LIASKOS C, NIE S, TSIOLIARIDOU A, et al. A new wire-less communication paradigm through software-controlled metasurfaces[J].IEEE Communications Magazine, 2018, 56(9):162-169.
[18] SU J X, LU Y, ZHANG H, et al. Ultra-wideband, wide angle and Polarization-insensitive specular reflection reduction by metasurface based on Parameter-adjustable Meta-Atoms[J].Scientific Reports, 2017, 7:42283.
[19] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable in-telligent surfaces:How it works, state of research, and the road ahead[J].IEEE Journal on Selected Areas in Communications, 2020, 38(11):2450-2525.
[20] SEKITANI T, NAKAJIMA H, MAEDA H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors[J].Nature Materials, 2009, 8(6):494-499.
[21] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamateri-als[J].Light:Science & Applications, 2014, 3(10):e218.
[22] HE Z Q, YUAN X J. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J].IEEE Wireless Communications Letters, 2020, 9(2):210-214.
[23] HU S, RUSEK F, EDFORS O. Beyond massive MIMO:The potential of positioning with large intelligent surfaces[J].IEEE Transactions on Signal Processing, 2018, 66(7):1761-1774.
[24] NADEEM Q U A, KAMMOUN A, CHAABAN A, et al. Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems[J].IEEE Transactions on Wireless Communications, 2020, 19(12):7748-7764.
[25] JUNG M, SAAD W, JANG Y, et al. Performance analysis of large intelligent surfaces (LISs):Asymptotic data rate and channel hardening effects[J].IEEE Transactions on Wireless Communications, 2020, 19(3):2052-2065.
[26] PAN C H, REN H, WANG K Z, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J].IEEE Transactions on Wireless Communications, 2020, 19(8):5218-5233.
[27] TAHA A, ALRABEIAH M, ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J].IEEE Access, 2021, 9:44304-44321.
[28] TAHA A, ALRABEIAH M, ALKHATEEB A. Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems[C]//2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019:1-6.
[29] HU S, RUSEK F, EDFORS O. Beyond massive MIMO:The potential of data transmission with large intelligent surfaces[J].IEEE Transactions on Signal Processing, 2018, 66(10):2746-2758.
[30] HU S, RUSEK F, EDFORS O. The potential of using large antenna arrays on intelligent surfaces[C]//2017 IEEE 85th Vehicular Technology Conference (VTC Spring). Piscataway:IEEE Press, 2017:1-6.
[31] HU S, RUSEK F, EDFORS O. Capacity degradation with modeling hardware impairment in large intelligent surface[C]//2018 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2018:1-6.
[32] HU S, RUSEK F, EDFORS O. Cramér-Rao lower bounds for positioning with large intelligent surfaces[C]//2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Piscataway:IEEE Press, 2017:1-6.
[33] JUNG M, SAAD W, JANG Y, et al. Reliability analysis of large intelligent surfaces (LISs):rate distribution and outage probability[J].IEEE Wireless Communications Letters, 2019, 8(6):1662-1666.
[34] TAN X, SUN Z, KOUTSONIKOLAS D, et al. Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays[C]//IEEE INFOCOM 2018-IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2018:270-278.
[35] TAN X, SUN Z, JORNET J M, et al. Increasing indoor spectrum sharing capacity using smart reflect-array[C]//2016 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2016:1-6.
[36] NIE S, JORNET J M, AKYILDIZ I F. Intelligent environments based on ultra-massive mimo platforms for wireless communication in millimeter wave and terahertz bands[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2019:7849-7853.
[37] BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J].IEEE Access, 2019, 7:116753-116773.
[38] HUANG C W, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J].IEEE Transactions on Wireless Communications, 2019, 18(8):4157-4170.
[39] MISHRA D, JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2019:4659-4663.
[40] WU Q Q, ZHANG R. Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J].IEEE Wireless Communications Letters, 2020, 9(5):586-590.
[41] WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J].IEEE Transactions on Wireless Communications, 2019, 18(11):5394-5409.
[42] FU M, ZHOU Y, SHI Y M. Intelligent reflecting surface for downlink non-orthogonal multiple access networks[C]//2019 IEEE Globecom Workshops (GC Wkshps). Piscataway:IEEE Press, 2019:1-6.
[43] YU X H, XU D F, SCHOBER R. MISO wireless communication systems via intelligent reflecting surfaces:(invited paper)[C]//2019 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway:IEEE Press, 2019:735-740.
[44] NADEEM Q U A, ALWAZANI H, KAMMOUN A, et al. Intelligent reflecting surface-assisted multi-user MISO communication:Channel estimation and beamforming design[J].IEEE Open Journal of the Communications Society, 2020, 1:661-680.
[45] CUI M, ZHANG G C, ZHANG R. Secure wireless communication via intelligent reflecting surface[J].IEEE Wireless Communications Letters, 2019, 8(5):1410-1414.
[46] YU X H, XU D F, SCHOBER R. Enabling secure wireless communications via intelligent reflecting surfaces[C]//2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019:1-6.
[47] CHEN J, LIANG Y C, PEI Y Y, et al. Intelligent reflecting surface:A programmable wireless environment for physical layer security[J].IEEE Access, 2019, 7:82599-82612.
[48] SHEN H, XU W, GONG S L, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J].IEEE Communications Letters, 2019, 23(9):1488-1492.
[49] GUAN X R, WU Q Q, ZHANG R. Intelligent reflecting surface assisted secrecy communication:is artificial noise helpful or not?[J].IEEE Wireless Communications Letters, 2020, 9(6):778-782.
[50] FANG S S, CHEN G J, LI Y H. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J].IEEE Wireless Communications Letters, 2021, 10(2):276-280.
[51] ZHOU G, PAN C H, REN H, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J].IEEE Transactions on Signal Processing, 2020, 68:5092-5106.
[52] LIU J X, XIONG K, LU Y, et al. Energy efficiency in secure IRS-aided SWIPT[J].IEEE Wireless Communications Letters, 2020, 9(11):1884-1888.
[53] GONG S M, LU X, HOANG D T, et al. Toward smart wireless communications via intelligent reflecting surfaces:A contemporary survey[J].IEEE Communications Surveys & Tutorials, 2020, 22(4):2283-2314.
[54] HAN Y T, ZHANG S W, DUAN L J, et al. Cooperative double-IRS aided communication:Beamforming design and power scaling[J].IEEE Wireless Communications Letters, 2020, 9(8):1206-1210.
[55] LYU J B, ZHANG R. Spatial throughput characterization for intelligent reflecting surface aided multiuser system[J].IEEE Wireless Communications Letters, 2020, 9(6):834-838.
[56] WANG Z R, LIU L, CUI S G. Intelligent reflecting surface assisted massive MIMO communications[C]//2020 IEEE 21 st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway:IEEE, 2020:1-5.
[57] ZHOU G, PAN C H, REN H, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J].IEEE Transactions on Signal Processing, 2020, 68:5092-5106.
[58] ZHOU G, PAN C H, REN H, et al. Robust beamforming design for intelligent reflecting surface aided MISO communication systems[J].IEEE Wireless Communications Letters, 2020, 9(10):1658-1662.
[59] TANG Y Z, MA G G, XIE H L, et al. Joint transmit and reflective beamforming design for IRS-assisted multiuser MISO SWIPT systems[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020:1-6.
[60] LI Q, CUI X Y, WU S X, et al. Sum rate maximization for multiuser MISO downlink with intelligent reflecting surface[DB/OL]. arXiv preprint:1912.09315V2,2019
[61] CAI Y X, WEI Z Q, HU S K, et al. Resource allocation for power-efficient IRS-assisted UAV communications[C]//2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2020:1-7.
[62] YANG G, XU X Y, LIANG Y C. Intelligent reflecting surface assisted non-orthogonal multiple access[C]//2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2020:1-6.
[63] YUE D W, NGUYEN H H, SUN Y. Analysis of intelligent reflecting surface-assisted mmWave doubly massive-MIMO communications[C]//2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). Piscataway:IEEE Press,2021:498-503.
[64] GUO H Y, LIANG Y C, CHEN J, et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks[C]//2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019:1-6.
[65] ZHOU G, PAN C H, REN H, et al. Intelligent reflecting surface aided multigroup multicast MISO communication systems[J].IEEE Transactions on Signal Processing, 2020, 68:3236-3251.
[66] WU Q Q, ZHANG R. Towards smart and reconfigurable environment:Intelligent reflecting surface aided wireless network[J].IEEE Communications Magazine, 2020, 58(1):106-112.
[67] MA X Y, CHEN Z, CHEN W J, et al. Joint channel estimation and data rate maximization for intelligent reflecting surface assisted terahertz MIMO communication systems[J].IEEE Access, 2020, 8:99565-99581.
[68] QIAO J P, ALOUINI M S. Secure transmission for intelligent reflecting surface-assisted mmWave and terahertz systems[J].IEEE Wireless Communications Letters, 2020, 9(10):1743-1747.
[69] MOHAMED Z, AÏSSA S. Leveraging UAVs with intelligent reflecting surfaces for energy-efficient communications with cell-edge users[C]//2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2020:1-6.
[70] BAI T, PAN C H, DENG Y S, et al. Latency minimization for intelligent reflecting surface aided mobile edge computing[J].IEEE Journal on Selected Areas in Communications, 2020, 38(11):2666-2682.
[71] KHOSHAFA M H, NGATCHED T M N, AHMED M H. Reconfigurable intelligent surfaces-aided physical layer security enhancement in D2D underlay communications[J].IEEE Communications Letters, 2021, 25(5):1443-1447.
[72] ZHANG C Y, CHEN W, HE C L, et al. Throughput maximization for intelligent reflecting surface-aided device-to-device communications system[J].Journal of Communications and Information Networks, 2020, 5(4):403-410.
[73] MAKARFI A U, RABIE K M, KAIWARTYA O, et al. Physical layer security in vehicular networks with reconfigurable intelligent surfaces[C]//2020 IEEE 91 st Vehicular Technology Conference (VTC2020-Spring). Piscataway:IEEE Press, 2020:1-6.
[74] ZHANG Z, LV L, WU Q Q, et al. Robust and secure communications in intelligent reflecting surface assisted NOMA networks[J].IEEE Communications Letters, 2021, 25(3):739-743.
[75] WU Q Q, ZHANG R. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints[J].IEEE Journal on Selected Areas in Communications, 2020, 38(8):1735-1748.
[76] ZENG Y, WU Q Q, ZHANG R. Accessing from the sky:A tutorial on UAV communications for 5G and beyond[J].Proceedings of the IEEE, 2019, 107(12):2327-2375.
[77] LI L X, SUN Y, CHENG Q Q, et al. Optimal trajectory and downlink power control for multi-type UAV aerial base stations[J].Chinese Journal of Aeronautics, 2021, 34(9):11-23.
[78] GU J C, DING G R, XU Y T, et al. Proactive optimization of transmission power and 3D trajectory in UAV-assisted relay systems with mobile ground users[J].Chinese Journal of Aeronautics, 2021, 34(3):129-144.
[79] WU G F, GAO X G, FU X W, et al. Mobility control of unmanned aerial vehicle as communication relay in airborne multi-user systems[J].Chinese Journal of Aeronautics, 2019, 32(6):1520-1529.
[80] WEI Z Q, CAI Y X, SUN Z, et al. Sum-rate maximization for IRS-assisted UAV OFDMA communication systems[C]//GLOBECOM 2020-2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020:1-7.
[81] GE L H, DONG P H, ZHANG H, et al. Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communications[J].IEEE Access, 2020, 8:78702-78712.
[82] MA D, DING M, HASSAN M. Enhancing cellular communications for UAVs via intelligent reflective surface[C]//2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2020:1-6.
[83] ZHANG S W, ZHANG R. Capacity characterization for intelligent reflecting surface aided MIMO communication[J].IEEE Journal on Selected Areas in Communications, 2020, 38(8):1823-1838.
[84] WU Q Q, ZHANG R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J].IEEE Transactions on Communications, 2020, 68(3):1838-1851.
[85] ZHU Z Y, CHU Z, WANG N, et al. Energy harvesting fairness in AN-aided secure MU-MIMO SWIPT systems with cooperative jammer[C]//2018 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2018:1-6.
[86] WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[C]//IEEE Transactions on Wireless Communications. Piscataway:IEEE Press,2018:5394-5409.
[87] JUNG M, SAAD W, JANG Y, et al. Reliability analysis of large intelligent surfaces (LISs):Rate distribution and outage probability[J].IEEE Wireless Communications Letters, 2019, 8(6):1662-1666.
[88] PUGLIELLI A, NAREVSKY N, LU P P, et al. A scalable massive MIMO array architecture based on common modules[C]//2015 IEEE International Conference on Communication Workshop (ICCW). Piscataway:IEEE Press, 2015:1310-1315.
[89] TANG W K, CHEN M Z, CHEN X Y, et al. Wireless communications with reconfigurable intelligent surface:path loss modeling and experimental measurement[J].IEEE Transactions on Wireless Communications, 2021, 20(1):421-439.
文章导航

/