论文

考虑连接非线性的大型桁架天线分散协调控制

  • 刘付成 ,
  • 朱东方
展开
  • 1. 上海航天技术研究院, 上海 201109;
    2. 上海航天控制技术研究所, 上海 201109;
    3. 上海市空间智能控制技术重点实验室, 上海 201109

收稿日期: 2020-10-19

  修回日期: 2020-11-30

  网络出版日期: 2021-01-26

基金资助

国家自然科学基金(61903245,61803258);上海市青年科技启明星计划(19QB1402100,20QA1404400)

Distributed coordinated control for large flexible truss antenna considering connection nonlinearity

  • LIU Fucheng ,
  • ZHU Dongfang
Expand
  • 1. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China;
    2. Shanghai Aerospace Control Technology Institute, Shanghai 201109, China;
    3. Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai 201109, China

Received date: 2020-10-19

  Revised date: 2020-11-30

  Online published: 2021-01-26

Supported by

National Natural Science Foundation of China (61903245, 61803258); Shanghai Rising-Star Program (19QB1402100, 20QA1404400)

摘要

针对含非线性连接的大型桁架式天线,考虑铰链非线性所产生的影响,基于连接子结构模态综合建模方法,建立其低阶非线性动力学模型。在此基础上,将动力学模型转换为分散参数化模型,并考虑状态变量不完全可测因素,设计适用于一致性理论的最优观测器。然后基于图论的思想提出桁架式天线的一致性形面保持控制方法,不仅实现了桁架式天线的高精度形面保持控制,同时对作动执行机构的失效具有容错性。仿真结果表明了所提控制方法的有效性。

本文引用格式

刘付成 , 朱东方 . 考虑连接非线性的大型桁架天线分散协调控制[J]. 航空学报, 2021 , 42(11) : 524890 -524890 . DOI: 10.7527/S1000-6893.2020.24890

Abstract

A dynamic model is established for the large space flexible structure with nonlinear connections based on the theory of dynamic substructure. On this basis, the dynamic model of the flexible structure vibration subsystem is converted into a distributed-parametric system model. Considering the states of the structure cannot be directly measured by any type of sensor, an optimum consensus observer is designed to estimate the main system's modal coordinates. Using the graph theory, a new leader-follower-based consensus vibration controller is proposed to actively suppress the oscillations in distributed parameter flexible structures. The proposed control method can realize high-precision shape maintaining control of large space flexible structure, and is robust to the failure of the structure control elements. The simulation results show the effectiveness of the proposed control method.

参考文献

[1] BALAS M. Trends in large space structure control theory:Fondest hopes, wildest dreams[J]. IEEE Transactions on Automatic Control, 1982, 27(3):522-535.
[2] 胡海岩, 田强, 张伟, 等. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展, 2013, 43(4):390-414. HU H Y, TIAN Q, ZHANG W, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes[J]. Advances in Mechanics, 2013, 43(4):390-414(in Chinese).
[3] 曹登庆, 白坤朝, 丁虎, 等. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019, 51(1):1-13. CAO D Q, BAI K C, DING H, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1):1-13(in Chinese).
[4] SALAHSHOOR E, EBRAHIMI S, MAASOOMI M. Nonlinear vibration analysis of mechanical systems with multiple joint clearances using the method of multiple scales[J]. Mechanism and Machine Theory, 2016, 105:495-509.
[5] FLORES P, LANKARANI H M. Dynamic response of multibody systems with multiple clearance joints[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(3):13-22.
[6] 荀剑, 阎绍泽. 基于小波变换的含间隙太阳能帆板动力学试验分析[J]. 清华大学学报(自然科学版), 2006, 46(11):1844-1847. XUN J, YAN S Z. A wavelet transform based analysis of vibration signals from a solar array with clearance[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(11):1844-1847(in Chinese).
[7] 孙杰, 孙俊, 刘付成, 等. 含间隙铰接的柔性航天器刚柔耦合动力学与控制研究[J]. 力学学报, 2020, 52(6):1569-1580. SUN J, SUN J, LIU F C, et al. Dynamics and control of rigid-flexible coupling flexible spacecraft with joint clearance[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6):1569-1580(in Chinese).
[8] 袭安, 张伟, 刘宏利. 大型环形桁架天线间隙铰径向动刚度的理论与实验研究[J]. 中国科学:物理学力学天文学, 2017, 47(10):45-53. XI A, ZHANG W, LIU H L. Analysis and experiment on dynamic stiffness of clearance hinge in large circular truss antenna[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(10):45-53(in Chinese).
[9] HU Q L, MA G F, LI C J. Active vibration control of a flexible plate structure using LMI-based H utput feedback control law[C]//Fifth World Congress on Intelligent Control and Automation. Piscataway:IEEE Press, 2004:738-742.
[10] KAR I N, MIYAKURA T, SETO K. Bending and torsional vibration control of a flexible plate structure using H∞ based robust control law[J]. IEEE Transactions on Control Systems Technology, 2000, 8(3):545-553.
[11] LUO Y J, XU M L, YAN B, et al. PD control for vibration attenuation in Hoop truss structure based on a novel piezoelectric bending actuator[J]. Journal of Sound and Vibration, 2015, 339:11-24.
[12] HU Q, JIA Y H, XU S J. Adaptive suppression of linear structural vibration using control moment gyroscopes[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):990-996.
[13] 许睿, 李东旭. 柔性太阳能帆板振动变论域自适应模糊控制[J]. 上海航天, 2012, 29(6):11-15. XU R, LI D X. Vibration control of flexible solar panel based on variable universe adaptive fuzzy control[J]. Aerospace Shanghai, 2012, 29(6):11-15(in Chinese).
[14] 李东旭. 大型挠性结构分散化振动控制——理论与方法[M]. 3版. 北京:科学出版社, 2013. LI D X. Decentralized vibration control of large flexible structures:theory and method[M]. 3rd edition. Beijing:Science Press, 2013(in Chinese).
[15] OMIDI E, MAHMOODI N. Hybrid positive feedback control for active vibration attenuation of flexible structures[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4):1790-1797.
[16] FERRARI G, AMABILI M. Active vibration control of a sandwich plate by non-collocated positive position feedback[J]. Journal of Sound and Vibration, 2015, 342:44-56.
[17] CHEVVA K, SUN F P, BLANC A, et al. Active vibration control using minimum actuation power[J]. Journal of Sound and Vibration, 2015, 340:1-21.
[18] HE W, GE S S. Vibration control of a flexible beam with output constraint[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8):5023-5030.
[19] BASU B, NIELSEN S R K. A multi-modal control using a hybrid pole-placement-integral resonant controller (PPIR) with experimental investigations[J]. Structural Control and Health Monitoring, 2011, 18(2):191-206.
[20] LI D X, XU R. Autonomous decentralized intelligent vibration control for large split-blanket solar arrays[J]. Science China Technological Sciences, 2013, 56(3):703-712.
[21] LI D X, LIU W, JIANG J P, et al. Placement optimization of actuator and sensor and decentralized adaptive fuzzy vibration control for large space intelligent truss structure[J]. Science China Technological Sciences, 2011, 54(4):853-861.
[22] 王恩美, 邬树楠, 王晓明, 等. 大型卫星太阳能帆板的分布式振动控制[J]. 航空学报, 2018, 39(1):221479. WANG E M, WU S N, WANG X M, et al. Distributed vibration control for large satellite solar panels[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):221479(in Chinese).
[23] QU Z, WANG J, HULL R A. Cooperative control of dynamical systems with application to autonomous vehicles[J]. IEEE Transactions on Automatic Control, 2008, 53(4):894-911.
[24] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2):505-512.
[25] SPERANZON A. Coordination, consensus and communication in multi-robot control systems[D]. Stockholm:KTH Royal Institute of Technology, 2006.
[26] LISTMANN K D, MASALAWALA M V, ADAMY J. Consensus for formation control of nonholonomic mobile robots[C]//2009 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2009:3886-3891.
[27] OMIDI E, MAHMOODI S N. Multi Positive Feedback vibration attenuation in distributed parameter resonant structures[C]//2015 American Control Conference (ACC). Piscataway:IEEE Press, 2015:1971-1976.
[28] OMIDI E, MAHMOODI S N. Vibration suppression of distributed parameter flexible structures by Integral Consensus Control[J]. Journal of Sound and Vibration, 2016, 364:1-13.
[29] 郝淑英, 陈予恕, 张琪昌, 等. 连结子结构在非线性动力学分析中的应用[J]. 天津大学学报, 2001, 34(3):295-299. HAO S Y, CHEN Y S, ZHANG Q C, et al. Application of link substructure to nonlinear dynamic system analysis[J]. Journal of Tianjin University, 2001, 34(3):295-299(in Chinese).
[30] REN W, BEARD R W. Distributed consensus in multi-vehicle cooperative control[M]. London:Springer London, 2008.
[31] ZHANG H W, LEWIS F L, DAS A. Optimal design for synchronization of cooperative systems:state feedback, observer and output feedback[J]. IEEE Transactions on Automatic Control, 2011, 56(8):1948-1952.
[32] 朱东方, 刘付成, 黄静, 等. 一种柔性可展桁架结构的主动振动抑制技术[J]. 飞控与探测, 2019, 2(5):33-40. ZHU D F, LIU F C, HUANG J, et al. Active vibration suppression technology of flexible deployable truss structure[J]. Flight Control & Detection, 2019, 2(5):33-40(in Chinese).
[33] 李月. 基于遗传算法的免疫算法对TSP问题的改进与研究[J]. 中国传媒大学学报(自然科学版), 2017, 24(4):58-63. LI Y. Improvement and research on TSP problem by immune algorithm based on genetic algorithm[J]. Journal of Communication University of China (Science and Technology), 2017, 24(4):58-63(in Chinese).
文章导航

/