流体力学与飞行力学

再入飞行器烧蚀热防护一体化计算方法

  • 周印佳 ,
  • 张志贤 ,
  • 付新卫 ,
  • 阿嵘
展开
  • 中国空间技术研究院 钱学森空间技术实验室, 北京 100094

收稿日期: 2020-07-10

  修回日期: 2020-08-07

  网络出版日期: 2020-10-10

基金资助

载人航天预先研究项目(030602)

Integrated computing method for ablative thermal protection system of reentry vehicles

  • ZHOU Yinjia ,
  • ZHANG Zhixian ,
  • FU Xinwei ,
  • A Rong
Expand
  • Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China

Received date: 2020-07-10

  Revised date: 2020-08-07

  Online published: 2020-10-10

Supported by

Manned Space Advance Research Project (030602)

摘要

针对再入飞行器烧蚀热防护系统烧蚀与瞬态温度耦合响应预测问题,提出了一体化计算方法,为再入飞行器烧蚀热防护设计提供包括气动热、烧蚀后退、瞬态温度响应在内的动态响应预测依据。该方法采用Sutton-Graves和Tauber-Sutton理论计算驻点的对流热流和辐射热流,通过表面能量平衡整合具有较高精度的烧蚀模型,并通过Landau变换简化烧蚀后退带来的节点删除过程并保证空间离散精度,最后求解瞬态有限差分热传导方程获得烧蚀热防护系统的热环境、烧蚀过程和温度响应。通过对比计算碳-碳材料钝头体地球再入过程和酚醛浸渍基碳烧蚀体(PICA)材料电弧风洞烧蚀模拟,对该方法对于不同材料体系的适用性进行了验证。计算结果表明:对于密度较高的碳-碳材料,本文计算结果与经典的热平衡积分法吻合较好,偏差在7%以内;而对于低密度材料(如烧蚀性能对压力高度敏感的PICA材料),随着热流和压力的增大,预测偏差逐渐增大。所提出的方法实现了气动热、烧蚀、瞬态温度响应耦合过程的一体化计算,在保证精度的前提下实现快速计算分析,为再入飞行器烧蚀热防护设计提供依据。

本文引用格式

周印佳 , 张志贤 , 付新卫 , 阿嵘 . 再入飞行器烧蚀热防护一体化计算方法[J]. 航空学报, 2021 , 42(7) : 124520 -124520 . DOI: 10.7527/S1000-6893.2020.24520

Abstract

To predict the coupled response of ablation and transient temperature in the ablation thermal protection system of reentry vehicles, an integrated computing method is proposed to provide the dynamic response prediction basis for the design of ablation thermal protection of reentry vehicles, including aerodynamic heat, ablative recession and transient temperature responses. The method adopts the Sutton-Graves and Tauber-Sutton theory to calculate the convection heat flux and radiation heat flux of the stagnation-point. Through the surface energy balance, an ablation model of high precision is integrated. The Landau transformation is introduced to simplify the node removal process caused by surface ablative recession, meanwhile ensuring the space discrete precision. The transient heat conduction equation is solved by the finite difference method, obtaining the heat environment, ablation process and temperature response for the ablative thermal protection system. The applicability of the proposed method to different material systems is verified by comparison of two simulation examples: the atmospheric reentry process of carbon-carbon blunt body, and the Phenolic Impregnated Carbon Ablator(PICA) ablative materials arc wind tunnel simulation. The calculation results show good agreement with the classical thermal equilibrium integral method, with an error smaller than 7%. However, for low-density materials (such as PICA materials whose ablative properties are highly sensitive to pressure), the prediction deviation increases with the increase of heat flux and pressure. The proposed method realizes integrated calculation of aerodynamic heat, ablation and transient temperature response in the coupling process, and fast calculation on the premise of accuracy ensurance, thereby providing a basis for the design of ablative heat protection of reentry vehicles.

参考文献

[1] 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8):022792. XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):022792(in Chinese).
[2] 陈自发, 张晓晨, 王振峰, 等. 高超声速飞行器碳基头锥烧蚀外形计算[J]. 航空学报, 2016, 37(S1):38-45. CHEN Z F, ZHANG X C, WANG Z F, et al. Hypersonic aircraft's carbon-based nose ablation shape calculation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):38-45(in Chinese).
[3] CONTI R, MACCORMACK R, GROENER L, et al. Practical Navier-Stokes computation of axisymmetric reentry flowfields with coupled ablation and shape change:AIAA-1992-0752[R]. Reston:AIAA, 1992.
[4] CHEN Y K, HENLINE W D. Hypersonic nonequilibrium Navier-Stokes solutions over an ablating graphite nosetip[J]. Journal of Spacecraft and Rockets, 1994, 31(5):728-734.
[5] CHEN Y K, HENLINE W D, TAUBER M E. Mars Pathfinder trajectory based heating and ablation calculations[J]. Journal of Spacecraft and Rockets, 1995, 32(2):225-230.
[6] BHUTTA B, DAYWITT J, RAHAIM J, et al. New technique for the computation of severe reentry environments:AIAA-1996-1861[R]. Reston:AIAA, 1996.
[7] KEENAN J A, CANDLER G V. Simulation of ablation in earth atmospheric entry:AIAA-1993-2789[R]. Reston:AIAA, 1993.
[8] KEENAN J A, CANFLER G V. Simulation of graphite sublimation and oxidation under reentry conditions:AIAA-1994-2083[R]. Reston:AIAA, 1994.
[9] HASSAN B, KUNTZ D W, POTTER D L. Coupled fluid/thermal prediction of ablating hypersonic vehicles:AIAA-1998-0168[R]. Reston:AIAA, 1998.
[10] KUNTZ D W, HASSAN B, POTTER D L. An iterative approach for coupling fluid/thermal predictions of ablating hypersonic vehicles:AIAA-1999-3460[R]. Reston:AIAA, 1999.
[11] OLYNICK D, CHEN Y K. Forebody TPS sizing with radiation and ablation for the stardust sample return capsule:AIAA-1997-2474[R]. Reston:AIAA, 1997.
[12] TABIEI A, SOCKALINGAM S. Multiphysics coupled fluid/thermal/structural simulation for hypersonic reentry vehicles[J]. Journal of Aerospace Engineering, 2012, 25(2):273-281.
[13] SUTTON K, GRAVES R A. A general stagnation-point convective-heating equation for arbitrary gas mixtures:NASA TR R-376[R]. Washington, D.C.:NASA, 1971.
[14] PAPADOPOULOS P, SUBRAHMANYAM P. Trajectory coupled aerothermodynamics modeling for atmospheric entry probes at hypersonic velocities:AIAA-2006-1034[R]. Reston:AIAA, 2006.
[15] TAUBER M E, SUTTON K. Stagnation-point radiative heating relations for earth and Mars entries[J]. Journal of Spacecraft and Rockets, 1991, 28(1):40-42.
[16] MILLS A F. Convective heat and mass transfer to re-entry vehicles[D]. Los Angeles:California University, 1978:65.
[17] HOVE D T, SHIH W C L. Re-entry vehicle stagnation region heat-transfer in particle environments[J]. AIAA Journal, 1977, 15(7):1002-1005.
[18] POTTS R L. Application of integral methods to ablation charring erosion-A review[J]. Journal of Spacecraft and Rockets, 1995, 32(2):200-209.
[19] SPALDING D B. Convective mass transfer[M]. New York:McGraw-Hill, 1963:156-168.
[20] POTTS R L. Application of integral methods to ablation charring erosion[J] Journal of Spacecraft and Rockets, 1995, 32(2):200-209.
[21] MILOS F S, RASSKY D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):24-34.
[22] POTTS R. On heat balance integral solutions of carbonaceous ablator response during reentry:AIAA-1984-1677[R]. Reston:AIAA, 1984.
[23] POTTS R. Hybrid integral/quasi-steady solution of charring ablation[C]//5th Joint Thermophysics and Heat Transfer Conference. Reston:AIAA, 1990.
[24] BLACKWELL B F, HOGAN R E. One-dimensional ablation using Landau transformation and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(2):282-287.
[25] ONAY O K, EYI S N. Implicit solution of one-dimensional transient ablation[C]//13th International Energy Conversion Engineering Conference. Reston:AIAA, 2015.
[26] AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation using a full Newton's method and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1):71-82.
[27] 肖筱南. 现代数值计算方法[M]. 北京:北京大学出版社, 2003:53-54. XIAO X N. Modern numerical methods[M]. Beijing:Peking University Press, 2003:53-54(in Chinese).
[28] PARK C. Calculation of stagnation-point heating rates associated with stardust vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(1):24-32.
[29] MILOS F S, GASCH M J, PRABHU D K. Conformal phenolic impregnated carbon ablator arcjet testing, ablation, and thermal response[J]. Journal of Spacecraft and Rockets, 2015, 52(3):804-812.
[30] MOHAMMADIUN H, MOHAMMADIUN M. Numerical modeling of charring material ablation with considering chemical-reaction effects, mass transfer and surface heat transfer[J]. Arabian Journal for Science and Engineering, 2013, 38(9):2533-2543.
[31] DEC J, BRAUN R. An approximate ablative thermal protection system sizing tool for entry system design[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
文章导航

/