流体力学与飞行力学

受轮缘密封结构影响的1.5级涡轮封严流与主流的相互作用以及轮缘密封间流动干扰

  • 黄镜玮 ,
  • 付维亮 ,
  • 马国骏 ,
  • 王国杰 ,
  • 高杰
展开
  • 1. 哈尔滨工程大学 动力与能源工程学院, 哈尔滨 150001;
    2. 重庆大学 动力工程及工程热物理博士后科研流动站, 重庆 401120;
    3. 重庆江增船舶重工有限公司博士后科研工作站, 重庆 402263

收稿日期: 2020-07-17

  修回日期: 2020-08-10

  网络出版日期: 2020-09-14

基金资助

国家自然科学基金(51779051,51979052);航空动力基金(6141B09050392);国家科技重大专项(2017-III-0010-0036,J2019-Ⅱ-0009-0029)

Interaction between 1.5-stage turbine rim seal purge flow and mainstream and flow interference between rim seals affected by rim seal structure

  • HUANG Jingwei ,
  • FU Weiliang ,
  • MA Guojun ,
  • WANG Guojie ,
  • GAO Jie
Expand
  • 1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China;
    2. Postdoctoral Research Station of Power Engineering and Engineering Thermophysics, Chongqing University, Chongqing 401120, China;
    3. Center for Post-Doctoral Research, Chongqing Jiangjin Shipbuilding Industry Co., LTD, Chongqing 402263, China

Received date: 2020-07-17

  Revised date: 2020-08-10

  Online published: 2020-09-14

Supported by

National Natural Science Foundation of China (51779051, 51979052); Aeronautics Power Foundation of China(6141B09050392); National Science and Technology Major Project (2017-III-0010-0036,J2019-Ⅱ-0009-0029)

摘要

为探究动叶上游不同轮缘密封结构封严出流对1.5级涡轮端区流场及轮缘密封间流动干扰的影响区别,通过Shear Stress Transport (SST)湍流模型对无密封腔室,上游密封结构分别为简单斜向、简单径向,下游密封腔室为简单轴向的1.5级涡轮进行了非定常数值模拟。结果表明:轮缘密封间干扰使带径向密封结构模型的下游轮缘腔室内封严效率偏低,并增强了固有的非定常不稳定特性。上游密封结构变化对动叶和第2级静叶流动的影响差异分别位于35%、65%叶高范围内;径向密封结构增加了上游静叶的堵塞效应、动叶入口气流的欠偏转程度、叶根吸力面负荷与14%叶高以上的轮毂通道涡强度,并在第2级静叶入口处产生更多低频压力波动,使其尾缘脱落涡尺度增大但13%叶高以上的轮毂通道涡强度较弱。与无密封腔室相比,通入封严气体总量为主流流量的0.8%时,带斜向密封结构的1.5级涡轮气动效率降低了0.94%,且带径向密封结构的1.5级涡轮气动损失额外增加了0.17%。

本文引用格式

黄镜玮 , 付维亮 , 马国骏 , 王国杰 , 高杰 . 受轮缘密封结构影响的1.5级涡轮封严流与主流的相互作用以及轮缘密封间流动干扰[J]. 航空学报, 2021 , 42(7) : 124549 -124549 . DOI: 10.7527/S1000-6893.2020.24549

Abstract

To investigate the difference in the effects of different rim seal structures upstream of the rotor on the flow interference between the 1.5-stage turbine mainstream and the rim seal, we conduct unsteady numerical simulation for a 1.5-stage turbine with the endwall, the simple chute and simple radial sealing structures at the upstream and simple axial sealing cavity at the downstream with the Shear Stress Transport (SST) turbulence model. The results show that the interference between the rim seals reduces the sealing efficiency of the downstream rim cavity with the radial sealing structure model, enhancing the inherent unsteady characteristics. The influence of the seal structure change on the rotor and the second stator is within the range of 35% and 65% span, respectively. The radial sealing structure increases the blocking effect of the upstream stator blades, the under deflection of rotor inlet flow, the suction surface load at the blade root, and the hub passage vortex strength above 14% span. In addition, more low-frequency pressure fluctuations are generated at the entrance of the second stator, the trailing edge shedding vortex scale increases, while the hub passage vortex strength above 13% span is weaker. Compared with the endwall structure, the aerodynamic efficiency of the 1.5-stage turbine with the chute sealing structure decreases by 0.94% when the total amount of the purge flow is 0.8% of the mainstream flow, and the aerodynamic loss of the 1.5-stage turbine with the radial sealing structure increases by an additional 0.17%.

参考文献

[1] JENNY P. Interaction mechanisms between rim seal purge flow and profiled end walls in a low-pressure turbine[D]. Switzerland:ETH Zürich, 2012.
[2] LIU H X, AN Y G, ZOU Z P. Aerothermal analysis of a turbine with rim seal cavity:GT2014-25276[R]. New York:ASME, 2014.
[3] OWEN J M. Prediction of ingestion through turbine rim seals-Part I:Rotationally induced ingress[J]. Journal of Turbomachinery, 2011, 133(3):031005.
[4] OWEN J M. Prediction of ingestion through turbine rim seals-Part Ⅱ:Externally induced and combined ingress[J]. Journal of Turbomachinery, 2011, 133(3):031006.
[5] PATINIOS M, SCOBIE J A, SANGAN C M, et al. Measurements and modeling of ingress in a new 1.5-stage turbine research facility[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(1):012603.
[6] SANGAN C M, SCOBIE J A, OWEN J M, et al. Experimental measurements of ingestion through turbine rim seals:Part 3-Single and double seals:GT2012-68493[R]. New York:ASME, 2012.
[7] 马宏伟, BOHN D E, DECKER A, 等. 涡轮级轮缘封严内非定常流场的准三维LDV测量[J]. 航空动力学报, 2004, 19(4):455-458. MA H W, BOHN D E, DECKER A, et al. Qusi-3D LDV measurements of unsteady flow field in a rim sealing of a turbine stage[J]. Journal of Aerospace Power, 2004, 19(4):455-458(in Chinese).
[8] 张灵俊, 罗翔, 余鸿鹏, 等. 1.5级涡轮实验台前腔燃气入侵实验[J]. 航空动力学报, 2013, 28(12):2746-2751. ZHANG L J, LUO X, YU H P, et al. Experiment on gas ingestion on forward disk cavity of 1.5 stage turbine rig[J]. Journal of Aerospace Power, 2013, 28(12):2746-2751(in Chinese).
[9] EASTWOOD D, COREN D D, LONG C A, et al. Experimental investigation of turbine stator well rim seal, Re-ingestion and interstage seal flows using gas concentration techniques and displacement measurements[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(8):082501.
[10] HORWOOD J T M, HUALCA F P, SCOBIE J A, et al. Experimental and computational investigation of flow instabilities in turbine rim seals[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(1):011028.
[11] GAO F, CHEW J W, BEARD P F, et al. Large-eddy simulation of unsteady turbine rim sealing flows[J]. International Journal of Heat and Fluid Flow, 2018, 70:160-170.
[12] GAO F, POUJOL N, CHEW J W, et al. Advanced numerical simulation of turbine rim seal flows and consideration for RANS turbulence modelling:GT2018-75116[R]. New York:ASME, 2018.
[13] GAO F, CHEW J W, MARXEN O. Inertial waves in turbine rim seal flows[J]. Physical Review Fluids, 2020, 5(2):024802.
[14] 高杰, 曹福堃, 褚召丰, 等. 旋转诱导轮缘密封不稳定流动特性及结构优化[J]. 中国科学:技术科学, 2019, 49(7):753-766. GAO J, CAO F K, CHU Z F, et al. Rotationally-induced unstable flow characteristics and structural optimization of rim seals[J]. Scientia Sinica (Technologica), 2019, 49(7):753-766(in Chinese).
[15] SCOBIE J A, HUALCA F P, PATINIOS M, et al. Re-ingestion of upstream egress in a 1.5-stage gas turbine rig[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(7):072507.
[16] PATINIOS M, ONG I L, SCOBIE J A, et al. Influence of leakage flows on hot gas ingress[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(2):021010.
[17] REGINA K, KALFAS A I, ABHARI R S. Experimental investigation of purge flow effects on a high pressure turbine stage[J]. Journal of Turbomachinery, 2015, 137(4):041006.
[18] 贾惟. 轮毂封严对涡轮端区流动影响的数值研究[J]. 热能动力工程, 2018, 33(8):20-29. JIA W. Numerical investigation of influence of rim seal purge flow on turbine endwall flows[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(8):20-29(in Chinese).
[19] 贾惟. 轮毂封严与高负荷涡轮端区流动的非定常相互作用[J]. 推进技术, 2017, 38(12):2674-2685. JIA W. Unsteady interaction between purge flow and endwall flow in highly-loaded turbines[J]. Journal of Propulsion Technology, 2017, 38(12):2674-2685(in Chinese).
[20] JIA W, LIU H X. Numerical investigation of the interaction between upstream purge flow and mainstream in a highly-loaded turbine:GT2014-25501[R]. New York:ASME, 2014.
[21] SCHÄDLER R, KALFAS A I, ABHARI R S, et al. Modulation and radial migration of turbine hub cavity modes by the rim seal purge flow:GT2016-56661[R]. New York:ASME, 2016.
[22] SCHREWE S, WERSCHNIK H, SCHIFFER H P. Experimental analysis of the interaction between rim seal and main annulus flow in a low pressure two stage axial turbine:GT2012-68192[R]. New York:ASME, 2012.
[23] 杨帆, 周莉, 王占学. 轮缘封严气流与转子干涉损失机理的数值研究[J]. 推进技术, 2018, 39(11):2481-2489. YANG F, ZHOU L, WANG Z X. Numerical investigation for interaction and loss mechanisms between rim seal flow and rotor[J]. Journal of Propulsion Technology, 2018, 39(11):2481-2489(in Chinese).
[24] 杨帆, 周莉, 王占学. 轮缘封严气流与上游导向器非定常干涉数值研究[J]. 西北工业大学学报, 2019, 37(1):129-136. YANG F, ZHOU L, WANG Z X. Numerical investigation of unsteady interaction between rim seal flow and upstream vane[J]. Journal of Northwestern Polytechnical University, 2019, 37(1):129-136(in Chinese).
[25] 杨帆, 周莉, 王占学. 轮缘封严气流与主流涡系交互作用的非定常数值研究[J]. 推进技术, 2019, 40(2):315-323. YANG F, ZHOU L, WANG Z X. Unsteady numerical investigation on vortex interaction between rim seal flow and mainstream[J]. Journal of Propulsion Technology, 2019, 40(2):315-323(in Chinese).
[26] 杨帆, 周莉, 王占学. 轮缘封严气流与主流干涉的损失机理研究[J]. 推进技术, 2020, 41(2):285-293. YANG F, ZHOU L, WANG Z X. Investigation on interaction loss mechanism between rim seal flow and mainstream[J]. Journal of Propulsion Technology, 2020, 41(2):285-293(in Chinese).
[27] FIORE M, GOURDAIN N, BOUSSUGE J F, et al. Delineating loss sources within a linear cascade with upstream cavity and purge flow[J]. Journal of Turbomachinery, 2019, 141(9):091008.
[28] BEHR T. Control of rotor tip leakage and secondary flow by casing air injection in unshrouded axial turbine[D]. Dresden:Dresden University of Technology, 2007.
[29] 孔祥林, 陶加银, 冯增国, 等. 结构参数对轮缘密封封严特性影响的数值研究[J]. 动力工程学报, 2014, 34(4):280-285,291. KONG X L, TAO J Y, FENG Z G, et al. Effects of geometrical parameters on sealing performance of turbine rim seals[J]. Journal of Chinese Society of Power Engineering, 2014, 34(4):280-285,291(in Chinese).
[30] 陶加银, 高庆, 宋立明, 等. 基于附加示踪变量法的涡轮轮缘密封非定常封严特性研究[J]. 工程热物理学报, 2014, 35(11):2154-2158. TAO J Y, GAO Q, SONG L M, et al. Numerical investigations on the unsteady mainstream ingestion characteristics of turbine rim seals with additional passive tracer method[J]. Journal of Engineering Thermophysics, 2014, 35(11):2154-2158(in Chinese).
[31] ZLATINOV M B, TAN C S, MONTGOMERY M, et al. Turbine hub and shroud sealing flow loss mechanisms:GT2011-46718[R]. New York:ASME, 2011.
[32] SCHUEPBACH P, ABHARI R S, ROSE M G, et al. Effects of suction and injection purge-flow on the secondary flow structures of a high-work turbine[J]. Journal of Turbomachinery, 2010, 132(2):021021.
文章导航

/