流体力学与飞行力学

基于深度学习驱动的L型定向热疏导机理

  • 王泽林 ,
  • 籍日添 ,
  • 惠心雨 ,
  • 丁晨 ,
  • 汪辉 ,
  • 白俊强
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国运载火箭技术研究院, 北京 100076

收稿日期: 2020-05-19

  修回日期: 2020-06-12

  网络出版日期: 2020-07-10

基金资助

国家自然科学基金(11802245)

L-shaped directional heat transfer based on deep learning

  • WANG Zelin ,
  • JI Ritian ,
  • HUI Xinyu ,
  • DING Chen ,
  • WANG Hui ,
  • BAI Junqiang
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2020-05-19

  Revised date: 2020-06-12

  Online published: 2020-07-10

Supported by

National Natural Science Foundation of China (11802245)

摘要

碳/碳(C/C)复合材料具有热导率大、比强度高、耐烧蚀和耐冲刷等优异特性,被广泛应用于飞行器的热防护系统中,其有效导热系数对于实际应用而言是重要的热物理性质,尽管可以通过有效介质理论、对热扩散方程直接求解和玻尔兹曼输运方程等传统方法计算C/C复合材料有效导热系数,但这些数值方法通常十分耗时。本文引入深度学习方法,将格子玻尔兹曼(LBM)的三维格子模型作为三维卷积神经网络(3D-CNN)微观结构,不仅解决了三维微观结构模型难以捕获的问题,还便于实现数值计算模型和CNN模型的同步简化,利用3D-CNN快速精准地预测三维三相C/C复合结构的有效导热系数,基于此对内置L型高导热碳纤维丝的定向热疏C/C复合结构的有效导热系数进行快速预测和研究。研究表明,CNN模型在LBM传热计算上表现出强大的学习能力,但在测试样本结构孔隙率过分超出训练集时预测误差将大幅增加,且当孔隙率变化范围从30%~35%变化到55%~60%时,CNN模型"内插"预测的相对误差较模型"外推"降低了0.93%~30.72%。在C/C复合结构中内置L型高导热碳纤维丝可以将高温区域的热量沿纤维方向定向疏导至低温区域。

本文引用格式

王泽林 , 籍日添 , 惠心雨 , 丁晨 , 汪辉 , 白俊强 . 基于深度学习驱动的L型定向热疏导机理[J]. 航空学报, 2021 , 42(6) : 124242 -124242 . DOI: 10.7527/S1000-6893.2020.24242

Abstract

Carbon/Carbon (C/C) composite materials are widely used in thermal protection systems of aircraft for their excellent characteristics such as high thermal conductivity, high specific strength, ablation resistance and erosion resistance, among which the effective thermal conductivity is an important physical property for practical applications. Traditional methods of studying effective thermal conductivity of composite materials such as the effective medium theory, the direct solution of heat diffusion equation or the Boltzmann transport equation are usually time-consuming. This paper introduces a deep learning method with the Lattice Boltzmann Method's (LBM's) three-dimensional lattice model as the microstructure sample of the Three-Dimensional Convolutional Neural Network (3D-CNN). This method not only overcomes the difficulty of capturing the three-dimensional microstructure model, but facilitates simultaneous simplification of the numerical calculation model and the CNN model. In this way, the effective thermal conductivity of the three-dimensional three-phase C/C composite structure can be predicted quickly and accurately by the 3D-CNN method. In addition, we quickly predict and study the effective thermal conductivity of the directional heat transfer C/C composite structure with built-in L-shaped carbon fiber with high thermal conductivity. Results show that the CNN model displays a strong learning ability in the LBM heat transfer calculation; however, when the porosity of the testing sample structure surpasses the training set excessively, the prediction error will increase significantly. When the porosity changes from 30%-35% to 55%-60%, the relative error of the CNN model "interpolation" is 0.93%-30.72% lower than that of the model "extrapolation". The built-in L-shaped carbon fiber with high thermal conductivity in the C/C composite structure can direct the heat in high temperature areas to low temperature areas along the fiber.

参考文献

[1] LIU X S, FU Q G, WANG H, et al. Microstructure, thermophysical property and ablation behavior of high thermal conductivity carbon/carbon composites after heat-treatment[J]. Chinese Journal of Aeronautics, 2020, 33(5):1541-1548.
[2] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):222853. LI X J, LI Y B, GUO F, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222853(in Chinese).
[3] CHOWDHURY P, SEHITOGLU H, RATEICK R. Damage tolerance of carbon-carbon composites in aerospace application[J]. Carbon, 2018, 126:382-393.
[4] WANG P P, LI H J, SUN J, et al. The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating[J]. Surface and Coatings Technology, 2018, 339:124-131.
[5] LI L, LI H J, YIN X M, et al. Microstructure evolution of SiC-ZrB2-ZrC coating on C/C composites at 1773 K under different oxygen partial pressures[J]. Journal of Alloys and Compounds, 2016, 687:470-479.
[6] MA J, NAN C W. Effective-medium approach to thermal conductivity of heterogeneous materials[J]. Annual Review of Heat Transfer, 2014, 17:303-331.
[7] PIETRAK K, WIS'NIEWSKI TS. A review of models for effective thermal conductivity of composite materials[J]. Concentrating Solar Power Technology, 2015, 95(1):14.
[8] CHENG P, HSU C T. The effective stagnant thermal conductivity of porous media with periodic structures[J]. Journal of Porous Media, 1999, 2(1):19-38.
[9] TONG Z, LIU M, BAO H. A numerical investigation on the heat conduction in high filler loading particulate composites[J]. International Journal of Heat and Mass Transfer, 2016, 100:355-361.
[10] WANG M R, PAN N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6):1325-1331.
[11] HASSELMAN D P H, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6):508-515.
[12] EVERY A G, TZOU Y, HASSELMAN D P H, et al. The effect of particle size on the thermal conductivity of ZnS/diamond composites[J]. Acta Metallurgica et Materialia, 1992, 40(1):123-129.
[13] DEMUTH C, MENDES M A A, RAY S, et al. Performance of thermal lattice Boltzmann and finite volume methods for the solution of heat conduction equation in 2D and 3D composite media with inclined and curved interfaces[J]. International Journal of Heat and Mass Transfer, 2014, 77:979-994.
[14] WANG M R, HE J H, YU J Y, et al. Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials[J]. International Journal of Thermal Sciences, 2007, 46(9):848-855.
[15] WANG H, CHEN L, QU Z G, et al. Modeling of multi-scale transport phenomena in shale gas production-A critical review[J]. Applied Energy, 2020, 262:114575.
[16] MISHRA S C, ROY H K. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method[J]. Journal of Computational Physics, 2007, 223(1):89-107.
[17] WEI H, BAO H, RUAN X L. Genetic algorithm-driven discovery of unexpected thermal conductivity enhancement by disorder[J]. Nano Energy, 2020, 71:104619.
[18] YU W, XIE H Q, XIN S, et al. Thermal properties of polymethyl methacrylate composite containing copper nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4):3121-3125.
[19] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese).
[20] 高晓光, 李新宇, 岳勐琪, 等. 基于深度学习的地空导弹发射区拟合算法[J]. 航空学报, 2019, 40(9):322858. GAO X G, LI X Y, YUE M Q, et al. Fitting algorithm of ground-to-air missile launching area based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):322858(in Chinese).
[21] WEI H, ZHAO S S, RONG Q Y, et al. Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods[J]. International Journal of Heat and Mass Transfer, 2018, 127:908-916.
[22] RONG Q Y, WEI H, HUANG X Y, et al. Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods[J]. Composites Science and Technology, 2019, 184:107861.
[23] 高峰阁, 迟卫东, 张鸿翔, 等. 国内外MPCF发展概况与展望[J]. 高科技纤维与应用, 2015, 40(5):33-37. GAO F G, CHI W D, ZHANG H X, et al. Development survey and prospect of mesophase pitch-based carbon fiber[J]. Hi-Tech Fiber & Application, 2015, 40(5):33-37(in Chinese).
[24] BENZI R, SUCCI S, VERGASSOLA M. The lattice Boltzmann equation:Theory and applications[J]. Physics Reports, 1992, 222(3):145-197.
[25] ZHAO K, LI Q, XUAN Y M. Investigation on the three-dimensional multiphase conjugate conduction problem inside porous wick with the lattice Boltzmann method[J]. Science in China Series E:Technological Sciences, 2009, 52(10):2973-2980.
[26] WANG J K, WANG M R, LI Z X. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer[J]. International Journal of Thermal Sciences, 2007, 46(3):228-234.
[27] D'ORAZIO A, CORCIONE M, CELATA G P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition[J]. International Journal of Thermal Sciences, 2004, 43(6):575-586.
[28] ZOU Q S, HE X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6):1591-1598.
[29] D'ORAZIO A, SUCCI S, ARRIGHETTI C. Lattice Boltzmann simulation of open flows with heat transfer[J]. Physics of Fluids, 2003, 15(9):2778-2781.
[30] WANG M R, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(3):036702.
[31] KINGMA D P, BA J. Adam:A method for stochastic optimization[EB/OL]. arXiv preprint:1412.6980, 2015.
文章导航

/