基于改进鲸鱼优化算法的无人机航路规划

  • 吴坤 ,
  • 谭劭昌
展开
  • 1. 北京航空航天大学 飞行学院, 北京 100083;
    2. 北京航空航天大学 先进无人飞行器北京高精尖学科中心, 北京 100083

收稿日期: 2020-05-26

  修回日期: 2020-06-03

  网络出版日期: 2020-06-18

基金资助

航空科学基金(20185851021)

Path planning of UAVs based on improved whale optimization algorithm

  • WU Kun ,
  • TAN Shaochang
Expand
  • 1. Flying College, Beihang University, Beijing 100083, China;
    2. Beijing Advanced Discipline Center for Unmanned Aircraft System, Beihang University, Beijing 100083, China

Received date: 2020-05-26

  Revised date: 2020-06-03

  Online published: 2020-06-18

Supported by

Aeronautical Science Foundation of China (20185851021)

摘要

针对复杂地形环境下的无人机航路规划问题,提出一种基于改进的鲸鱼优化算法的航路规划算法。首先,根据起始点和目标点等信息,通过坐标系旋转将二维航路规划问题转化为D维空间下的寻优问题;然后,将灰狼优化算法中的等级制度和微分进化算法中的贪婪策略引入鲸鱼优化算法提出改进的鲸鱼优化算法。在保证算法收敛速度的同时,所提的改进鲸鱼优化算法有效地提高了开发能力和搜索能力。最后,将提出的改进算法应用于无人机的航路问题求解。仿真结果表明,所提的改进鲸鱼优化算法能够有效的获得一条代价最优的、有效的航路结果,其性能优于传统的优化算法。

本文引用格式

吴坤 , 谭劭昌 . 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020 , 41(S2) : 724286 -724286 . DOI: 10.7527/S1000-6893.2020.24286

Abstract

A path planning method for Unmanned Aerial Vehicles (UAVs) in complex terrain environment is proposed based on the Improved Whale Optimization Algorithm (IWOA). First, according to information of the starting point and target point, the two-dimensional path planning problem is transformed into the optimization problem in the D-dimensional space by the rotating coordinate system. Then, a novel hybrid algorithm called IWOA is proposed by combining the hierarchy of the Gray Wolf Optimization algorithm (GWO) and the greedy strategy of the Differential Evolution algorithm (DE) into the Whale Optimization Algorithm (WOA). While ensuring the convergence speed, the IWOA efficiently improves the exploration and exploitation abilities. Finally, the improved algorithm is applied to the path planning of UAVs. The simulation results show that the IWOA can effectively obtain a cost optimal and effective path result, with better performance than the traditional optimization algorithm.

参考文献

[1] SUN C, LIU Y, DAI R, et al. Two approaches for path planning of unmanned aerial vehicles with avoidance zones[J]. Journal of Guidance Control and Dynamics, 2017, 40(8):2076-2083.
[2] FREITAS H, FAIAL B S, SILVA A V C E, et al. Use of UAVs for an efficient capsule distribution and smart path planning for biological pest control[J]. Computers and Electronics in Agriculture, 2020, 173:105387.
[3] VASQUEZGOMEZ J I, MARCIANOMELCHOR M, VALENTIN L, et al. Coverage path planning for 2D convex regions[J]. Journal of Intelligent and Robotic Systems, 2020, 97(1):81-94.
[4] AGGARWAL S, KUMAR N. Path planning techniques for unmanned aerial vehicles:A review, solutions, and challenges[J]. Computer Communications, 2020, 149:270-299.
[5] LIN Y, SARIPALLI S. Sampling-based path planning for UAV collision avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11):3179-3192.
[6] WU X, XU L, ZHEN R, et al. Biased sampling potentially guided intelligent bidirectional RRT* algorithm for UAV path planning in 3D environment[J]. Mathematical Problems in Engineering, 2019(8):1-12.
[7] ZHANG Y, LI L, LIN H, et al. Development of path planning approach using improved A-star algorithm in AGV system[J]. Journal of Internet Technology, 2019, 20(3):915-924.
[8] MADRIDANO A, ALKAFF A, MARTIN D, et al. 3D trajectory planning method for UAVs swarm in building emergencies[J]. Sensors, 2020, 20(3):642.
[9] NIU H, JI Z, SAVVARIS A, et al. Energy efficient path planning for unmanned surface vehicle in spatially-temporally variant environment[J]. Ocean Engineering, 2020, 196:106766.
[10] AJEIL F H, IBRAHEEM I K, AZAR A T, et al. Grid-based mobile robot path planning using aging-based ant colony optimization algorithm in static and dynamic environments[J]. Sensors, 2020, 20(7):1880.
[11] LIU Y, ZHANG X J, ZHANG Y, et al. Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach[J]. Chinese Journal of Aeronautics, 2019, 32(6):1504-1519.
[12] QU C, GAI W, ZHANG J, et al. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning[J]. Knowledge Based Systems, 2020,89:105530
[13] LIU X, DU X, ZHANG X, et al. Evolution-algorithm-based unmanned aerial vehicles path planning in complex environment[J]. Computers & Electrical Engineering, 2019, 80:106493.
[14] KUMAR P B, RAWAT H, PARHI D R. Path planning of humanoids based on artificial potential field method in unknown environments[J]. Expert Systems, 2019, 36(2):1-12.
[15] LI B, WU Y. Path planning for UAV ground target tracking via deep reinforcement learning[J]. IEEE Access, 2020, 8:29064-29074.
[16] AJEIL F H, IBRAHEEM I K, SAHIB M A, et al. Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm[J]. Applied Soft Computing, 2020, 89:106076.
[17] CHEN P, LI Q, ZHANG C, et al. Hybrid chaos-based particle swarm optimization-ant colony optimization algorithm with asynchronous pheromone updating strategy for path planning of landfill inspection robots[J]. International Journal of Advanced Robotic Systems, 2019, 16(4):1-11.
[18] PAN J, LIU N, CHU S, et al. A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path planning[J]. IEEE Access, 2020, 8:17691-17712.
[19] SARASWATHI M, MURALI G B, DEEPAK B B, et al. Optimal path planning of mobile robot using hybrid cuckoo search-bat algorithm[J]. Procedia Computer Science, 2018, 133:510-517.
[20] ZHANG J, ZHANG Y, ZHOU Y, et al. Path planning of mobile robot based on hybrid multi-objective bare bones particle swarm optimization with differential evolution[J]. IEEE Access, 2018, 6:44542-44555.
[21] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
文章导航

/