材料工程与机械制造

飞秒脉冲激光诱导TC4微结构表面抑冰特性实验

  • 崔静 ,
  • 张杭 ,
  • 翟巍 ,
  • 路梦柯 ,
  • 杨广峰
展开
  • 1. 中国民航大学 航空工程学院, 天津 300300;
    2. 中国民航大学 交通科学与工程学院, 天津 300300

收稿日期: 2020-03-29

  修回日期: 2020-04-22

  网络出版日期: 2020-06-12

基金资助

国家自然科学基金(U1633111,U1933107);中国民航大学蓝天青年学者培养经费;中国民航大学科研启动经费(2011QD22X)

Experiment on ice suppression characteristics of TC4 microstructure surface induced by femtosecond pulse laser

  • CUI Jing ,
  • ZHANG Hang ,
  • ZHAI Wei ,
  • LU Mengke ,
  • YANG Guangfeng
Expand
  • 1. College of Aeronautical Engineering, Cival Aviation University of China, Tianjin 300300, China;
    2. School of Transportation Science and Engineering, Cival Aviation University of China, Tianjin 300300, China

Received date: 2020-03-29

  Revised date: 2020-04-22

  Online published: 2020-06-12

Supported by

National Natural Science Foundation of China (U1633111, U1933107); Blue Sky Young Scholars Training Fund of Civil Aviation University of China; China Civil Aviation University Research Startup Fund(2011QD22X)

摘要

飞机发动机进气道前缘唇口积冰将会严重威胁航空安全,仿生研究表明具有微纳结构的疏水表面可以起到良好的抑冰效果。针对飞机唇口材料TC4,采用飞秒脉冲激光诱导制备TC4微结构表面,利用三维形貌仪和扫描电镜对TC4合金表面三维形貌和微纳结构进行观测,应用接触角测量仪分析表面浸润改性,依托结冰特性实验系统测试微结构表面抑冰抑霜性能,并分析飞秒脉冲激光加工工艺参数对表面微观结构和抑霜特性的影响机制。研究结果表明:随着激光扫描速度的增大,TC4合金表面形成的拱形沟壑深度增加,沟壑上方出现干涉条纹以及圆形凸起且微纳凸起的尺寸随扫描速度的增大而增大,接触角先减小后增大再减小;加工后表面液滴冻结时间比未加工表面延迟30 s;扫描速度2 000 mm/s时的液滴冻结时间最长,霜层质量最小,高度最低。飞秒激光加工TC4合金表面形成的微纳结构以及表面吸附的有机物能够改变表面接触角;粗糙度和表面形貌能够影响表面结冰时间和结霜量。

本文引用格式

崔静 , 张杭 , 翟巍 , 路梦柯 , 杨广峰 . 飞秒脉冲激光诱导TC4微结构表面抑冰特性实验[J]. 航空学报, 2021 , 42(6) : 424032 -424032 . DOI: 10.7527/S1000-6893.2020.24032

Abstract

Ice accumulation on the front edge lip of the aircraft engine intake will seriously threaten aviation safety. Bionic research shows that a hydrophobic surface with a micro-nano structure has a desirable ice suppression effect. With the aircraft lip material TC4, a TC4 microstructure surface is prepared using femtosecond pulse laser induction. A three-dimensional topography and a scanning electron microscope are used to observe the three-dimensional topography and micro-nano structure of the TC4 alloy surface. Relying on the icing characteristics experimental system to test the ice and frost resistance performance of the microstructure surface, we analyze the influence mechanism of the femtosecond pulse laser processing technology parameters on the surface microstructure and frost suppression properties. The results show that with the increase of the laser scanning speed, the depth of the arched groove formed on the surface of the TC4 alloy increases, interference fringes and circular protrusions appear above the groove, and the size of the micro-nano protrusion increases with the increase of the scanning speed. The contact angle decreases first and then increases and finally decreases; after processing, the surface droplet freezing time is delayed by 30 s compared to the unprocessed surface; at the scanning speed of 2 000 mm/s, the droplet freezing time is the longest, the frost layer quality the smallest, and the height the lowest. The micro-nano structure formed on the surface of TC4 alloy by femtosecond laser processing and the organic matter adsorbed on the surface can change the surface contact angle, and the roughness and surface morphology can affect the surface freezing time and frost amount.

参考文献

[1] YANG H, XU W, ZHAO J, et al. Predicting the probability of ice storm damages to electricity transmission facilities based on ELM and copula function[J]. Neurocomputing, 2011, 74(16):2573-2581.
[2] 杨斌. 输电线路防覆冰用超疏水自清洁涂料的制备[D]. 重庆:重庆大学, 2011:1-2. YANG B. Preparation of a super-hydrophobic and self-cleaning coating for an anti-icing transmission line[D]. Chongqing:Chongqing University, 2011:1-2(in Chinese).
[3] 毛昆朋, 潘帅锋, 陈枫, 等. 金属表面抗结冰研究进展[J]. 科技通报, 2013, 29(11):1-6. MAO K P, PAN S F, CHEN F, et al. Research progress on anti-icing modification of metals surfaces[J]. Bulletin of Science and Technology, 2013, 29(11):1-6(in Chinese).
[4] 王冠, 张德远, 陈华伟. 飞机防冰-从传统到仿生的发展[J]. 工业技术创新, 2014, 1(2):241-250 WANG G, ZHANG D Y, CHEN H W. The development of aircraft anti-icing-from traditional to bionic[J]. Industrial Technology Innovation, 2014, 1(2):241-250(in Chinese).
[5] 周家希. 大型飞机防冰系统研制发展研究[J]. 中国战略新兴产业, 2017(24):47. ZHOU J X, Research and development of large aircraft anti-icing system[J]. China Strategic Emerging Industry, 2017(24):47(in Chinese).
[6] 胡宗浩, 张明, 苏亚东. 多功能微纳表面在飞机上的应用需求与发展方向[J]. 飞机设计, 2019, 39(1):76-80. HU Z H, ZAHNG M, SU Y D. Briefly analyzing the equirement and development of multifunctional micro-nano surface on aircraft[J]. Aircraft Design, 2019, 39(1):76-80(in Chinese).
[7] 龙江游, 吴颖超, 龚鼎为, 等. 飞秒激光制备超疏水铜表面及其抗结冰性能[J]. 中国激光, 2015, 42(7):164-171. LONG J Y, WU Y C, GONG D W, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 2015, 42(7):164-171(in Chinese).
[8] 王津, 杨辉, 王莉平, 等. 防冰疏水微结构表面的设计[J]. 航空学报, 2017, 38(S1):41-48. WANG J, YANG H, WANG L P, et al. Surface design for anti-icing and hydrophobic micro-structures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):41-48(in Chinese).
[9] 薛磊, 于竞尧, 马学胜, 等. 飞秒激光制备铜微纳结构表面的润湿及抗结冰特性研究[J]. 航空制造技术, 2018, 61(12):74-79. XUE L, YU J Y, MA X S, et al. Femtosecond laser fabricated wetting copper surfaces and their anti-icing properties[J]. Aeronautical Manufacturing Technology, 2018, 61(12):74-79(in Chinese).
[10] EBERLE P, TIWARI M K, MAITRA T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity[J]. Nanoscale, 2014, 6(9):4874-4881.
[11] VERCILLO V, TONNICCHIA S, ROMANO J M, et al. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications[J]. Advanced Functional Materials, 2020,30(16):1910268.
[12] YOUNG T. Experiments and calculations relative to physical optics[R]. London:Royal Society of London, 1804.
[13] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry Research., 1936, 28(8):988-994.
[14] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944,40:546-551.
[15] 于竞尧. 飞秒激光诱导微纳结构表面的防覆冰性能研究[D]. 长春:长春理工大学, 2018. 11-12 YU J Y. Study on anticing from micro-nano structuresurface induced by femtosecond laser[D]. Changchun:Changchun University of Science and Technology,2018. 11-12(in Chinese).
[16] DARMANIN T, GUITTARD F. Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A, 2014, 2:16319-16359.
[17] GUO P, ZHENG Y, WEN M, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces[J]. Advanced Materials, 2012, 24(19):2642-2648.
[18] MEULER A J, MCKINLEY G H, COHEN R E. Exploiting topographical texture to impart icephobicity[J]. ACS Nano, 2010, 4(12):7048-7052.
[19] BOREYKO J B, SRIJANTO B R, NGUYEN T D, et al. Dynamic defrosting on nanostructured superhydrophobic surfaces[J]. Langmuir:the ACS Journal of Surfaces & Colloids, 2013, 29(30):9516-9524.
[20] KULINICH S A, FARHADI S, NOSE K, et al. Superhydrophobic surfaces:are they really ice-repellent?[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(1):25-9.
[21] CHEN J, LIU J, HE M, et al. Superhydrophobic surfaces cannot reduce ice adhesion[J]. Applied Physics Letters, 2012, 101(11):111603.
[22] MICHAEL A. HENDERSON. An HREELS and TPD study of water on TiO2 (110):the extent of molecular versus dissociative adsorption[J]. Surface Science, 1996, 355:151-166.
[23] WANG R, SAKAI N, FUJISHIMA A, et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces[J]. Journal of Physical Chemistry B, 1999, 103(12):2188-2194.
[24] PANT R, SINGHA S, BANDYOPADHYAY A, et al. Investigation of static and dynamic wetting transitions of UV responsive tunable wetting surfaces[J]. Applied Surface Science, 2014, 292. 777-781.
[25] YANG Z, LIU X, TIAN Y. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J]. Journal of Colloid and Interface Science, 2018, 533, 268-277.
[26] LIU P, CAO L, ZHAO W. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons[J]. Applied Surface Science, 2015, 324, 576-583.
[27] 黄玲艳. 表面特性对冷壁面结霜过程影响的研究[D]. 北京:北京工业大学, 2011:41-64 HUANG L Y. A study on the effect of cold surface characteristics on frost formation[D]. Beijing:Beijing University of Technology, 2011:41-64(in Chinese).
[28] 许旺发. 冷面结霜机理及其抑制对策的实验研究[D]. 北京:清华大学, 2004:36-37 XU W F. Experimental studies on mechanism of formation on cold surfaces and its control[D]. Beijing:Tsinghua University, 2004:36-37(in Chinese).
[29] 王伶俐. 表面润湿性对结霜初期液滴冻结及融霜排液的影响[D]. 北京:清华大学, 2017:35 WANG L L. Effect of surface wettability on droplets freezing in the initial stage of frosting and defrosting process[D]. Beijing:Tsinghua University, 2017:35(in Chinese).
文章导航

/