流体力学与飞行力学

传感器局部温度差异对压缩拐角热流测量的影响

  • 师昆仑 ,
  • 邱云龙 ,
  • 陈伟芳 ,
  • 聂春生 ,
  • 曹占伟
展开
  • 1. 浙江大学 航空航天学院, 杭州 310027;
    2. 中国运载火箭技术研究院 空间物理重点实验室, 北京 100076

收稿日期: 2020-04-03

  修回日期: 2020-05-19

  网络出版日期: 2020-06-04

基金资助

国家自然科学基金(6162790014)

Influence of local temperature difference of sensors on heat flow measurement of compression corner

  • SHI Kunlun ,
  • QIU Yunlong ,
  • CHEN Weifang ,
  • NIE Chunsheng ,
  • CAO Zhanwei
Expand
  • 1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China;
    2. Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2020-04-03

  Revised date: 2020-05-19

  Online published: 2020-06-04

Supported by

National Natural Science Foundation of China(6162790014)

摘要

针对高超声速飞行器在进行热流测量时存在的传感器与其周围热防护材料之间的热匹配性问题,即冷点效应问题,采用自主研发的计算程序研究了冷点效应对压缩拐角表面热流分布的影响,得到了在不同压缩拐角特征流动区域内冷点效应对其表面热流分布的影响机制。计算结果分析表明:冷点效应的存在会显著地提高冷点区域内的表面热流值;在压缩拐角的分离域内,冷点效应造成的热流增长幅度较大,在再附点附近,冷点效应造成的热流增长幅度较小。

本文引用格式

师昆仑 , 邱云龙 , 陈伟芳 , 聂春生 , 曹占伟 . 传感器局部温度差异对压缩拐角热流测量的影响[J]. 航空学报, 2020 , 41(12) : 124055 -124055 . DOI: 10.7527/S1000-6893.2020.24055

Abstract

This work numerically investigates the cold-spot effect on the aerodynamic heating of a hypersonic compression corner. When measuring heat flow of hypersonic aircraft, thermal matching problems caused by the cold-spot effect appear between the sensor and surrounding heat-resistant materials. A self-developed calculation program is used to study the influence of cold-spot effect on the heat flow distributing on the surface of the compression corner, revealing the influencing mechanisms of the cold-spot effect on the surface heat flux distribution in the corner flow region. Calculation results show that the existence of the cold-spot effect will significantly increase the heat flow value in cold spot areas; the range of heat flow caused by the cold-spot effect becomes larger in the separation domain, and smaller near the reattachment point.

参考文献

[1] 邱春图,陈振中. 高超声速飞行器热结构设计分析技术研究[J]. 飞机设计,2012,32(6):6-14. QIU C T, CHEN Z Z. Research on thermal structure design and analysis technology of hypersonic vehicle[J]. Aircraft Design, 2012, 32(6):6-14(in Chinese).
[2] 余平,段毅,尘军.高超声速飞行的若干气动问题[J]. 航空学报,2015,36(1):7-23. YU P, DUAN Y, CHEN J. Some aerodynamic problems of hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23(in Chinese).
[3] BOYD I D. Modeling of associative ionization reactions in hypersonic rarefied flows[J]. Physics of Fluids,2007,19(9):096102.
[4] 刘健,原志超,杨恺,等. 高超声速飞行器多层复杂热防护结构气-固耦合快速热分析方法[J]. 推进技术,2016,37(2):228-234. LIU J, YUAN Z C, YANG K, et al. Gas-solid coupled fast thermal analysis method for multi-layer complex thermal protection structure of hypersonic aircraft[J]. Journal of Propulsion Technology, 2016, 37(2):228-234(in Chinese).
[5] 陈思安,周青,李广德,等. 热防护系统——高超声速飞行器的"消防服"[J]. 科技传播,2019(20):128-130. CHEN S A, ZHOU Q, LI G D, et al. Thermal protection system-Fire suit for hypersonic vehicle[J]. Public Communication of Science and Technology, 2019(20):128-130(in Chinese).
[6] 王静,杨杰,赵文斌. 航天飞行器外防热复合材料发展概况[J]. 材料导报,2018,32(S2):425-429. WANG J, YANG J, ZHAO W B. Development of exothermic composite materials for spacecraft[J]. Materials Reports, 2018,32(S2):425-429(in Chinese).
[7] 于明星,白书欣,徐晓亮,等. 非平衡气动加热条件下的材料热响应差异研究[J]. 材料科学与工艺,2017,25(6):16-21. YU M X, BAI S X, XU X L, et al. Research on thermal response difference of materials under non-equilibrium aerodynamic heating[J]. Materials Science and Technology, 2017, 25(6):16-21(in Chinese).
[8] 杨驰,刘娜,孔维萱,等. 高超声速再入热环境下防热复合材料烧蚀传热计算及影响因素分析[J].玻璃钢/复合材料,2017(4):35-41. YANG C, LIU N, KONG W X, et al. Study on ablation heat transfer calculation and influencing factors of thermal protection materials under hypersonic thermal environment[J]. Fiber Reinforced Plastics/Composites, 2017(4):35-41(in Chinese).
[9] 朱广生,聂春生,曹占伟,等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学,2019,33(2):1-10. ZHU G S, NIE C S, CAO Z W, et al. Research progress of pneumatic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2):1-10(in Chinese).
[10] 王晓洁,李辅安,韩红敏,等. 复合型外防热材料性能研究[J]. 固体火箭技术,2010,33(5):582-585. WANG X J, LI F A, HAN H M, et al. Study on property of thermal protection composite material[J]. Journal of Solid Rocket Technology, 2010, 33(5):582-585(in Chinese).
[11] MURRY A L, LEWIS C H. Hypersonic three-dimensional viscous shock-layer flows over blunt bodies[J]. AIAA Journal, 1978, 16(2):1279-1286.
[12] ANDERSON E C, LEWIS C H. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixture in chemical equilibrium:NASA-CR-1893[R]. Washington, D.C.:NASA, 1971.
[13] GNOOFF P A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows:NASA-TP-2953[R]. Washington, D.C.:NASA, 1990.
[14] REYNOLDS W C, KAYS W M, KLINE S J. Heat transfer in the turbulent incompressible boundary layer. Part 2:Step wall-temperature distribution:NASA-MEMO-12-2-58 W/PT2[R]. Washington, D.C.:NASA, 1958.
[15] REYNOLDS W C, KAYS W M, KLINE S J. A summary of experiments on turbulent heat transfer from a non-isothermal flat plate[J]. Journal of Heat Transfer, 1960, 82(4):341-348.
[16] MUKERJI D, EATON J K, MOFFAT R J. Convective heat transfer near one-dimensional and two-dimensional wall temperature steps[J]. Journal of Heat Transfer, 2004, 126(2):202-210.
[17] KANDULA M, REINARTS T. Corrections for convective heat flux gauges subjected to a surface temperature discontinuity:AIAA-2002-3087[R]. Reston:AIAA, 2002.
[18] KANDULA M, HADDAD G F. Two-dimensional thermal boundary layer corrections for convective heat flux gauges[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(3):543-547.
[19] KANDULA M, HADDAD G F, CHEN R H. Three-dimensional thermal boundary layer corrections for circular heat flux gauges mounted in a flat plate with a surface temperature discontinuity[J]. International Journal of Heat and Mass Transfer, 2007, 50(2):713-722.
[20] 曾磊,邱波,李宇.传感器表面温度对热流测量的影响[J].航空学报,2018,39(6):64-71. ZENG L, QIU B, LI Y. Effect of sensor surface temperature on heat flow measurement[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):64-71(in Chinese).
[21] 李宇,朱广生,聂春生,等.高超声速对流环境下冷点效应对圆箔式热流传感器测热特性的影响研究[J].实验流体力学,2019,33(4):39-44. LI Y, ZHU G S, NIE C S, et al. Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4):39-44(in Chinese).
[22] 温浩, 史爱明, 鄢荣. 斜激波极值规律的边界层影响[J]. 航空学报, 2019, 40(12):123196. WEN H, SHI A M, YAN R. Boundary layer effects on rules of minimum oblique shock strength[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123196(in Chinese).
文章导航

/