固体力学与飞行器总体设计

某机翼的安全预测载荷模型建立

  • 赵燕 ,
  • 宋江涛 ,
  • 唐宁
展开
  • 1. 中国飞行试验研究院 总体所, 西安 710089;
    2. 中国飞行试验研究院 发动机所, 西安 710089;
    3. 中国飞行试验研究院 飞机所, 西安 710089

收稿日期: 2020-01-22

  修回日期: 2020-04-03

  网络出版日期: 2020-03-26

Construction of safety-predicting load model on certain wing

  • ZHAO Yan ,
  • SONG Jiangtao ,
  • TANG Ning
Expand
  • 1. General Institute, Chinese Flight Test Establishment, Xi'an 710089, China;
    2. Engine Institute, Chinese Flight Test Establishment, Xi'an 710089, China;
    3. Aircraft Institute, Chinese Flight Test Establishment, Xi'an 710089, China

Received date: 2020-01-22

  Revised date: 2020-04-03

  Online published: 2020-03-26

摘要

基于试飞阶段全V-N包线的实测飞行载荷,将改进遗传算法、线性回归与BP神经网络融合,给出了一种适用于全寿命周期的自适应安全预测载荷模型建立方法。将该方法应用于某飞机机翼的安全预测载荷模型建立,并对所建立的载荷模型进行了全V-N包线的验证。分析了样本空间与载荷模型精度的关系。结果表明:建立的弯矩预测载荷全包线最大误差为10.6%、平均误差为1.0%,剪力的最大误差为9.1%、平均误差为0.4%,比优化线性和分段线性的误差小,比神经网络的收敛性好。随着建模数据从全样本、1/2、1/3、…、1/10样本的变化,弯矩和剪力方程的全V-N包线的最大误差整体呈增大趋势,弯矩最大误差变化范围为10.6%~19.6%,最大剪力误差变化范围为9.1%~27.9%。

本文引用格式

赵燕 , 宋江涛 , 唐宁 . 某机翼的安全预测载荷模型建立[J]. 航空学报, 2020 , 41(10) : 223852 -223852 . DOI: 10.7527/S1000-6893.2020.23852

Abstract

Using measured flight loads in full V-N envelope during flight tests, an adaptive safety-predicting load model for life cycles was built based on the combination of an improved genetic algorithm, a linear regression and BP neural network. The above adaptive method was used to build the safety-predicting load model of certain wing which was validated in full V-N envelope. Moreover, the effects of the sample on the model accuracy were analyzed. The results showed that the maximum and average errors of the predicted bending-moment in full V-N envelope are 10.6% and 1.0%, and those of the predicted shear in full V-N envelope are 9.1% and 0.4%, respectively. These errors are lower than those from optimized-linear and piece-wise-linear methods, and the convergence is better than that from the neural network. With the sample varying from full, 1/2, 1/3,…, 1/10, the maximum errors of the bending-moment and the shear change from 10.6% to 19.6% and from 9.1% to 27.9%, respectively.

参考文献

[1] SHIN J. The NASA aviation safety program:Over-view[C]//Proceedings of ASME Conference on ASME Turbo Expo 2000:Power for Land, Sea, and Air. Washington, D.C.:ASME, 2000:2000-GT-0660.
[2] FAA, EUROCONTROL. ATM Safety techniques and toolbox safety action Plan-15[M]. Washington, D.C.:FAA, 2007.
[3] DEZFULI H, BENJAMIN A, EVERETT C, et al. NASA system safety handbook volume 1:System safety framework and concepts for implementation:NASA/SP-2010-580[R]. Washington, D.C.:NASA, 2010
[4] DEZFULI H, BENJAMIN A, EVERETT C, et al. NASA system safety handbook volume 2:System safety concepts, guidelines, and implementation examples:NASA/SP-2014-612[R]. Washington, D.C.:NASA, 2014.
[5] GROEN F, EVERETT C, HALL A, et al. NASA accident precursor analysis handbook:NASA/SP-2011-3423[R]. Washington, D.C.:NASA, 2011.
[6] DEZFULI H, STAMATELATOS M, MAGGIO G, et al. NASA risk-informed decision making handbook:NASA/SP-2010-576[R]. Washington, D.C.:NASA, 2010.
[7] XU X D, ULREY M L, BROWN J A, et al. Safety sufficiency for NextGen-Assessment of selected existing safety methods, tools, processes, and regulations:NASA/CR-2013-217801[R]. Washington, D.C.:NASA, 2013.
[8] HUNTER G W, ROSS R W, BERGER D E, et al. A concept of operations for an integrated vehicle health assurance system:NASA/TM-2013-217825[R]. Washington, D.C.:NASA, 2013.
[9] 曾宪昂, 蒲利东, 李俊杰, 等. 基于超静定配平的机动载荷控制风洞试验[J]. 航空学报, 2017, 38(5):120596. ZENG X A, PU L D, LI J J, et al. Wind-tunnel test of maneuver load control based overdetermined trim[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):120596(in Chinese).
[10] 张海涛, 余建虎, 李志蕊, 等. T型尾翼布局的垂尾载荷测量技术[J]. 航空学报, 2019, 40(3):122074. ZHANG H T, YU J H, LI Z R, et al. Measuring technology for vertical fin load of T-shaped empennage layout[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):122074(in Chinese).
[11] 赵燕. 基于遗传算法与评估模型的飞行载荷实测研究[J]. 航空学报, 2014, 35(9):2506-2512. ZHAO Y. Flight load measurement based on genetic algorithm and evaluating model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2506-2512(in Chinese).
[12] 阎楚良, 高镇同. 飞机高置信度中值随机疲劳载荷谱的编制原理[J]. 航空学报, 2000, 21(2):118-123. YAN C L, GAO Z T. Compilation theory of median stochastic fatigue load spectrum with high confidence level for airplane[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(2):118-123.
[13] JYLHÄ J, RUOTSALAINEN M, SALONEN T, et al. Towards automated flight-maneuver-specific fatigue analysis[C]//ICAF 2009 Bridging the Gap between Theory and Operational Practice. Dordrecht:Springer Netherlands, 2009:1121-1134.
[14] LESKI A, REYMER P, KURDELSKI M. Development of load spectrum for full scale fatigue test of a trainer aircraft[C]//ICAF 2011 Structural Integrity:Influence of Efficiency and Green Imperatives. Dordrecht:Springer Netherlands, 2011:573-584.
[15] REYMER P, LESKI A. Flight loads acquisition for PZL-130 OrLik TCII full scale fatigue test[J]. Fatigue of Aircraft Structures, 2011(3):78-85.
[16] 孙建华, 蘧时红. 飞行载荷参数识别方法研究[J]. 航空学报, 1994, 15(1):109-112. SUN J H, QU S H. A study on a parametric identification method of flight load[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(1):109-112(in Chinese).
[17] KANEKO H, FURUKAWA T. Operational loads regression equation development for advanced fighter aircraft[C]//24th International Congress of the Aeronautical Sciences. Bonn:ICAS, 2004:1-9.
[18] 曹良秋, 舒成辉. 基于微分载荷模型的飞行载荷参数辨识方法[J]. 飞行力学, 2013, 31(1):69-71. CAO L Q, SHU C H. A method on flight load identification based on differential load model[J]. Flight Dynamics, 2013, 31(1):69-71(in Chinese).
[19] 何发东, 舒成辉. 贝叶斯正则化BP网络在机翼载荷分析中的应用[J]. 飞行力学, 2009, 27(4):85-88. HE F D, SHU C H. Application of BP neural networks based on Bayesian regularization to aircraft wing loads analysis[J]. Flight Dynamics, 2009, 27(4):85-88(in Chinese).
[20] ALLEN M J, DIBLEY R P. Modeling aircraft wing loads from flight data using neural networks[J]. SAE Transactions, 2003, 112(1):512-520.
[21] 张夏阳, 黄其青, 殷之平, 等. 基于GA-ELM的飞行载荷参数识别[J]. 航空工程进展, 2014, 5(4):497-501. ZHANG X Y, HUANG Q Q, YIN Z P, et al. Establishing a parametric flight loads identification method with GA-ELM model[J]. Advances in Aeronautical Science and Engineering, 2014, 5(4):497-501(in Chinese).
[22] 曹善成, 宋笔锋, 殷之平, 等. 基于支持向量机回归的飞行载荷参数识别研究[J]. 西北工业大学学报, 2013, 31(4):535-539. CAO S C, SONG B F, YIN Z P, et al. Establishing a flight load parameter identification model with support vector machine regression[J]. Journal of Northwestern Polytechnical University, 2013, 31(4):535-539(in Chinese).
[23] 赵燕. 基于遗传算法与评估模型的飞行载荷实测研究[J]. 航空学报, 2014, 35(9):2506-2512. ZHAO Y. Flight load measurement based on genetic algorithm and evaluating model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2506-2512(in Chinese).
[24] 熊峻江. 飞行器结构疲劳与寿命设计[M]. 北京:北京航空航天大学出版社, 2004. XIONG J J. Fatigue life design for aircraft structure[M]. Beijing:Beihang University Press, 2004(in Chinese).
[25] 中国人民解放军空军装备部综合计划部. 军用飞机结构强度规范第10部分:飞行试验:GJB 67.10A-2008[S]. 北京:总装备部军标出版发行部, 2008. Comprehensive Planning Department, Reserve Department of PLA Air Force. Military airplane structural strength specification Part 10:Flight tests:GJB 67.10A-2008[S]. Beijing:General Equipment Department Military Standard Press, 2008(in Chinese).
文章导航

/