材料工程与机械制造

自由曲面侧铣刀具轮廓与轨迹同步优化方法

  • 王晶 ,
  • 罗明 ,
  • 张定华 ,
  • 陈冰
展开
  • 1. 西北工业大学 航空发动机高性能制造工业和信息化部重点实验室, 西安 710072;
    2. 中国科学院 西安光学精密机械研究所, 西安 710119

收稿日期: 2019-12-10

  修回日期: 2020-01-13

  网络出版日期: 2020-03-13

基金资助

国家科技重大专项(2017ZX04011011);陕西省重点研发计划重点项目-工业领域(2018ZDXM-GY-063);中央高校基本科研业务费专项资金(31020190505003)

Simultaneous optimization method for tool contour design and path planning of freeform surface flank milling

  • WANG Jing ,
  • LUO Ming ,
  • ZHANG Dinghua ,
  • CHEN Bing
Expand
  • 1. Key Laboratory of High Performance Manufacturing for Aero Engine Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China

Received date: 2019-12-10

  Revised date: 2020-01-13

  Online published: 2020-03-13

Supported by

National Science & Technology Major Project (2017ZX04011011); Shaanxi Key Research and Development Program in Industrial Domain (2018ZDXM-GY-063); The Fundamental Research Funds for the Central Universities (31020190505003)

摘要

针对自由曲面侧铣加工中轨迹规划困难、加工精度难保证等问题,提出了一种自由曲线母线类刀具的外形轮廓设计方法。该方法在优化刀具轮廓的同时,充分考虑了加工过程中的工件精度和刀轴光顺性问题,实现了自由曲线母线类刀具的形状设计和对应侧铣加工轨迹的生成。首先,通过分别定义刀具轮廓母线和刀轴轨迹面实现对刀具形状和侧铣加工轨迹的表达,并由此计算切削行上刀具工件干涉量来评价加工误差,以刀轴轨迹面能量评价刀轴光顺性,建立了基于加工误差和刀轴光顺性的刀具轮廓与加工轨迹的同步优化模型;其次,为实现对同步优化模型的求解,给出了基于序列逼近法的求解策略,以及优化初值中刀轴轨迹面控制参数和刀具轮廓控制参数获取方法;最后,分别通过加工轨迹规划实验和刀具轮廓设计实验,验证了本文算法在在自由曲面四轴侧铣加工刀具轮廓设计与加工轨迹优化中的正确性及有效性。研究成果为提高自由曲面类零件侧铣加工精度、实现侧铣加工刀具轮廓设计及侧铣加工轨迹规划提供了一种有效的方法和手段。

本文引用格式

王晶 , 罗明 , 张定华 , 陈冰 . 自由曲面侧铣刀具轮廓与轨迹同步优化方法[J]. 航空学报, 2020 , 41(11) : 423720 -423720 . DOI: 10.7527/S1000-6893.2020.23720

Abstract

Aiming at the difficulties in toolpath planning and machining accuracy achievement in free-surface flank milling, this paper proposes a method for designing the tool contour of freeform generatrix. While optimizing the tool contour, this method fully considers the workpiece accuracy and tool axis smoothness during machining, thereby realizing the tool contour design and the flank milling path planning. This study first evaluates the machining error by calculating the interference between tool and workpiece on the cutting line after respectively defining the tool contour generatrix and tool axis trajectory surface to express the tool shape and flank milling path. The tool axis smoothness is also evaluated by tool axis trajectory energy, and a simultaneous optimization model of tool contour and machining trajectory based on the machining error and tool axis smoothness is established. Secondly, to solve the simultaneous optimization model, a solution strategy based on the successive approximation method is presented, and the method for acquiring the control parameters of the tool axis trajectory surface and the tool contour control parameters in the initial values are also provided. Finally, the path planning experiment and tool contour design experiment are designed respectively, verifying the correctness and effectiveness of the algorithm in the tool contour design and path optimization for 4-axis flank milling of freeform surface proposed in this paper. This research provides an effective method for both accuracy improvement in flank milling of freeform surface parts and realization of the tool contour design and path planning of flank milling.

参考文献

[1] 吴宝海, 罗明, 张莹, 等. 自由曲面五轴加工刀具轨迹规划技术的研究进展[J]. 机械工程学报, 2008, 44(10):9-18. WU B H, LUO M, ZHANG Y, et al. Advances in tool path planning techniques for 5-axis machining of sculptured surfaces[J]. Journal of Mechanical Engineering, 2008, 44(10):9-18(in Chinese)
[2] WANG X C, YU Y. An approach to interference-free cutter position for five-axis free-form surface side finishing milling[J]. Journal of Materials Processing Technology, 2002, 123(2):191-196.
[3] 曹利新, 吴宏基, 刘健. 基于五坐标数控圆柱形刀具线接触加工自由曲面的几何学原理[J]. 机械工程学报, 2003, 39(7):134-137. CAO L X, WU H J, LIU J. Geometrical theory of machining free form surface by cylindrical cutter in 5-axis NC machine tools[J]. Journal of Mechanical Engineering, 2003, 39(7):134-137(in Chinese)
[4] 吴宝海, 王尚锦. 基于正向杜邦指标线的五坐标侧铣加工[J]. 机械工程学报, 2006, 42(11):192-196. WU B H, WANG S J. 5-axis flank machining sculptured surface based on signed dupin indicatrix[J]. Journal of Mechanical Engineering, 2006, 42(11):192-196(in Chinese)
[5] 蔡永林, 席光, 樊宏周, 等. 任意曲面叶轮五坐标数控加工刀具轨迹生成[J]. 西安交通大学学报, 2003, 37(1):77-80. CAI Y L, XI G, FAN H Z, et al. Tool-path planning for 5-axis numerical control machining of arbitrary surface impeller[J]. Journal of Xi'an Jiaotong University, 2003, 37(1):77-80(in Chinese)
[6] CAI Y L, XI G. Global tool interference detection in five-axis machining of sculptured surfaces[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2002, 216(10):1345-1353.
[7] CAI Y L, XI G, WANG S J. Efficient tool path planning for five-axis surface machining with a drum-taper cutter[J]. International Journal of Production Research, 2003, 41(15):3631-3644.
[8] 李志强, 陈五一. 复杂曲面五坐标加工中主曲率匹配法的刃形误差[J]. 机械工程学报, 2006, 42(2):135-140. LI Z Q, CHEN W Y. Cutting edge error in principal axis mathod for five-axis machining of sculptured surfaces[J]. Journal of Mechanical Engineering, 2006, 42(2):135-140(in Chinese).
[9] 陈良骥, 王永章. 整体叶轮五轴侧铣数控加工方法的研究[J]. 计算机集成制造系统, 2007, 13(1):141-146. CHEN L J, WANG Y Z. Five-axis CNC flank milling method of integral impeller[J]. Computer Integrates Manufacturing Systems, 2007, 13(1):141-146(in Chinese).
[10] HARIK R F, GONG H, BERNARD A. 5-axis flank milling:A state-of-the-art review[J]. Computer-Aided Design, 2013, 45(3):796-808.
[11] BALA M, CHANG T C. Automatic cutter selection and optimal cutter path generation for prismatic parts[J]. International Journal of Production Research, 2007, 29(11):2163-2176.
[12] CHEN Z C, FU Q. An optimal approach to multiple tool selection and their numerical control path generation for aggressive rough machining of pockets with free-form boundaries[J]. Computer-Aided Design, 2011, 43(6):651-663.
[13] CHEN Z C, ZHANG H D. Optimal cutter size determination for 21/2-axis finish machining of NURBS profile parts[J]. International Journal of Production Research, 2009, 47(22):6279-6293.
[14] ZHANG Y J, GE L L. Selecting optimal set of tool sequences for machining of multiple pockets[J]. International Journal of Advanced Manufacturing Technology, 2009, 42(3-4):233-241.
[15] CHAVES-JACOB J, POULACHON G, DUC E. New approach to 5-axis flank milling of free-form surfaces:Computation of adapted tool shape[J]. Computer-Aided Design, 2009, 41(12):918-929.
[16] LI C G, BEDI S, MANN S. Flank millable surface design with conical and barrel tools[J]. Computer-Aided Design and Applications, 2008, 5(5):461-470.
[17] MONIES F, FELICES J N, RUBIO W, et al. Five-axis NC milling of ruled surfaces:Optimal geometry of a conical tool[J]. International Journal of Production Research, 2002, 40(12):2901-2922.
[18] YAN D Q, ZHANG D H, LUO M. Optimization of barrel cutter for five-axis flank-milling based on approximation of tool envelope surface[J]. Computer-Aided Design and Applications, 2015, 12(6):1-10.
[19] LUO M, YAN D Q, WU B H, et al. Barrel cutter design and toolpath planning for high-efficiency machining of freeform surface[J]. International Journal of Advanced Manufacturing Technology, 2015, 85(9-12):2495-2503.
[20] LI T, CHEN W Y, XU R F, et al. Flank milling for blisk with a barrel ball milling cutter[J]. Key Engineering Materials, 2009, 407-408:202-206.
[21] ZHENG G, ZHU L M, BI Q Z. Cutter size optimisation and interference-free tool path generation for five-axis flank milling of centrifugal impellers[J]. International Journal of Production Research, 2012, 50(23):1-12.
[22] ZHU L M, DING H, XIONG Y L. Simultaneous optimization of tool path and shape for five-axis flank milling[J]. Computer-Aided Design, 2012, 44(12):1229-1234.
[23] WU C Y. Arbitrary surface flank milling and flank sam in the design and manufacturing of jet engine fan and compressor airfoils[C]//ASME Turbo Expo 2012:Turbine Technical Con-ference and Exposition. New York:American Society of Mechanical Engineers Digital Collection, 2012:21-30.
[24] WU C Y. Arbitrary surface flank milling of fan, compressor, and impeller blades[C]//ASME 1994 International Gas Turbine and Aeroen-gine Congress and Exposition. New York:American Society of Mechanical Engineers Digital Collection, 1994:534-539.
[25] ARAS E. Generating cutter swept envelopes in five-axis milling by two-parameter families of spheres[J]. Computer-Aided Design, 2009, 41(2):95-105.
[26] HU S M, LI Y F, JU T, et al. Modifying the shape of NURBS surfaces with geometric constraints[J]. Computer-Aided Design, 2001, 33(12):903-912.
[27] POURAZADY M, XU X. Direct manipulations of NURBS surfaces subjected to geometric constraints[J]. Computers & Graphics, 2006, 30(4):598-609.
[28] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京:高等教育出版社, 2001. SHI F Z. CAGD & NURBS[M]. Beijing:Higher Education Press, 2001(in Chinese).
文章导航

/