材料工程与机械制造

2060铝锂合金冷模热成形界面换热系数确定的实验与算法

  • 张云光 ,
  • 李志强 ,
  • 王耀奇 ,
  • 李红 ,
  • 李淑慧
展开
  • 1. 上海交通大学 机械与动力工程学院, 上海 200240;
    2. 中国航空制造技术研究院 金属成形技术研究室, 北京 100024

收稿日期: 2020-01-07

  修回日期: 2020-02-03

  网络出版日期: 2020-02-21

Determination of interfacial heat transfer coefficient in cold die hot forming of 2060 Al-Li alloy: Experiment and algorithm

  • ZHANG Yunguang ,
  • LI Zhiqiang ,
  • WANG Yaoqi ,
  • LI Hong ,
  • LI Shuhui
Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Institute of Metal Forming Technology, AVIC Manufacturing Technology Institute, Beijing 100024, China

Received date: 2020-01-07

  Revised date: 2020-02-03

  Online published: 2020-02-21

摘要

2060铝锂合金具有密度低、比强度高等优势,在航空航天零件制造领域已得到广泛应用。通过冷模热成形工艺可以提高2060铝锂合金成形性,减少开裂、拉毛、回弹等缺陷的发生,后续时效处理可以提高零件整体刚度。然而在实际成形过程中缺乏对温度场的准确预测,即缺乏2060铝锂合金在变压强下界面换热行为的准确描述,无法对成形效果进行评估。本文利用冷模热成形界面换热测试平台,对不同压强下2060铝锂合金与H13热作模具钢的换热行为进行测试研究,基于考虑模具钢变热物性参数的显式有限差分法反算模具表面温度,计算得到不同压强下的界面换热系数,并与Beck反传热算法进行对比,两者计算结果相近。实验结果显示2060铝锂合金IHTC随压强增大而增大,在20 MPa下IHTC=1.906 6 kW/(m2·K)。改进的有限差分法具有计算效率高、速度快、反映实际模具内部温度场、误差较低等优点,可拓展应用于其他薄板材料在冷模热成形条件下的界面换热系数求解。

本文引用格式

张云光 , 李志强 , 王耀奇 , 李红 , 李淑慧 . 2060铝锂合金冷模热成形界面换热系数确定的实验与算法[J]. 航空学报, 2021 , 42(2) : 423805 -423805 . DOI: 10.7527/S1000-6893.2020.23805

Abstract

With advantages of low density and high specific strength, 2060 Al-Li alloy has been widely used in aerospace parts manufacturing. Cold die hot forming process can improve the formability of 2060 Al-Li alloy, reducing occurrences of defects such as cracking, drawing and springback, and subsequent aging treatment can improve the overall rigidity of the parts. However, lack of accurate prediction of the temperature field in the actual forming process, that is, an accurate description of the interfacial heat transfer behavior of 2060 Al-Li alloy under variable pressures hampers the evaluation of the forming effect. This study obtained heat transfer behavior between 2060 Al-Li alloy and H13 hot-work die steel under different pressures using the interfacial heat transfer test platform. The die surface temperature was calculated by Finite-Difference Method (FDM) in consideration of temperature effects of thermal properties. The Interface Heat Transfer Coefficient (IHTC) at different pressures was calculated and compared with Beck's inverse heat transfer algorithm. The calculated results were similar. The experimental results showed that IHTC of 2060 Al-Li alloy increased with the increase of pressure, with IHTC=1.906 6 W/(m2·K) at 20 MPa. The improved FDM has the advantages of high computational efficiency, high speed, satisfactory reflection of the actual temperature field inside the mold, and low error. Therefore, it can be extended to the IHTC solution of other sheet materials in cold die hot forming.

参考文献

[1] LIU B, PENG C Q, WANG R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9):1705-1715.
[2] 李劲风, 郑子樵, 陈永来, 等. 铝锂合金及其在航天工业上的应用[J]. 宇航材料工艺, 2012, 1(1):13-19. LI J F, ZHENG Z Q, CHEN Y L, et al. Aluminum lithium alloy and its application in aerospace industry[J]. Aerospace Materials Technology, 2012, 1(1):13-19(in Chinese).
[3] MENG B, DU Z, LI C, et al. Constitutive behavior and microstructural evolution in hot deformed 2297 Al-Li alloy[J/OL]. Chinese Journal of Aeronautics (2019-05-31)[2020-01-07]. https://doi.org/10.1016/j.cja.2019.03.042
[4] KARBASIAN H, TEKKAYA A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15):2103-2118.
[5] LIN J, DEAN T, GARRETT R. A process in forming high strength and complex-shaped Al-alloy sheet components:WO2008059242[P]. 2008.
[6] LIN Y, LI L, FU Y, et al. Hot compressive deformation behavior of 7075 Al alloy under elevated temperature[J]. Journal of Materials Science, 2012, 47(3):1306-1318.
[7] ZAIN-UL-ABDEIN M, DANIEL N, JULLIEN J F, et al. Thermo-mechanical characterization of AA 6056-T4 and estimation of its material properties using Genetic Algorithm[J]. Materials & Design, 2010, 31(9):4302-4311.
[8] 刘勇. 高强铝合金板料高效率热冲压工艺及高温流变和摩擦行为研究[D]. 武汉:华中科技大学, 2018:10-25. LIU Y. Research on high efficiency hot stamping technology and high temperature rheological and friction behavior of high strength aluminum alloy sheet[D]. Wuhan:Huazhong University of Science and Technology, 2018:10-25(in Chinese).
[9] MENDIGUREN J, ARGANDONA E S, GALDOS L. Hot stamping of AA7075 aluminum sheets[J]. IOP Conference Series:Materials Science and Engineering, 2016, 159(1):12-26.
[10] LIN J G, MOHAMED M, BALINT D, et al. The development of continuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications[J]. International Journal of Damage Mechanics, 2014, 23(5):684-701.
[11] GAO H, WENG T, LIU J, et al. Hot stamping of an Al-Li alloy:A feasibility study[J]. MATEC Web of Conferences, 2015, 21(1):5-17.
[12] 凡晓波. 2195铝锂合金板材热变形-淬火复合成形规律与强化机制[D]. 哈尔滨:哈尔滨工业大学, 2016:40-51. FAN X B. Law and strengthening mechanism of heat deformation-quenching composite forming of 2195 Al-Li alloy plates[D]. Harbin:Harbin Institute of Technology, 2016:40-51(in Chinese).
[13] WANG L, STRANGWOOD M, BALINT D, et al. Formability and failure mechanisms of AA2024 under hot forming conditions[J]. Materials Science & Engineering A, 2011, 528(6):2648-2656.
[14] CHEN G, CHEN M, WANG N, et al. Hot forming process with synchronous cooling for AA2024 aluminum alloy and its application[J]. International Journal of Advanced Manufacturing Technology, 2015, 86(1-4):133-139.
[15] 马高山. 复杂铝锂合金零件热成形技术[M]. 北京:化学工业出版社,2011:1-27. MA G S. Hot forming technology of complex Al-Li alloy parts[M]. Beijing:Chemical Industry Press, 2011:1-27(in Chinese).
[16] LIU X, EL FAKIR O, ZHENG Y, et al. Effect of tool coatings on the interfacial heat transfer coefficient in hot stamping of aluminum alloys under variable contact pressure conditions[J]. International Journal of Heat and Mass Transfer, 2019, 137(1):74-83.
[17] LI Y, LI S, HE J, et al. Identification methods on blank-die interfacial heat transfer coefficient in press hardening[J]. Applied Thermal Engineering, 2019, 152(2):865-877.
[18] 王斌. 5083铝合金温热成形界面换热系数求解及影响因素研究[D].大连:大连理工大学, 2016:10-27. WANG B. Study on the solution of heat transfer coefficient at the interface of thermal forming of 5083 aluminum alloy and its influencing factors[D]. Dalian:Dalian University of Technology, 2016:10-27(in Chinese).
[19] ZHAO K, WANG B, CHANG Y, et al. Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping[J]. Applied Thermal Engineering, 2015, 79(1):17-26.
[20] 杨世铭, 陶文铨. 传热学[M]. 第4版. 北京:高等教育出版社, 2006:1-58. YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing:Higher Education Press, 2006:1-58(in Chinese).
[21] 校文超. 7075铝合金板材热塑性本构建模与热冲压关键技术研究[D]. 北京:北京科技大学,2018:17-26. XIAO W C. Research on the key technology of thermoplastic construction of reflective 7075 aluminum alloy sheet[D]. Beijing:University of Science and Technology Beijing,2018:17-26(in Chinese).
[22] FIEBERG C, KNEER R. Determination of thermal contact resistance from transient temperature measurements[J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6):1017-1023.
[23] HEINRICH B, BECK H B, BLACKWELL B, et al. Inverse heat conduction. Ⅲ-Posed problems[J]. ZAMM Journal of Applied Mathematics and Mechanics, 1987, 67(3):212-213.
文章导航

/