针对与后机身融合的一体化红外抑制器模型,采用数值模拟的方法研究了内部遮挡和出口修型对后机身表面温度场和红外辐射特性的影响。在混合管外部采用遮挡套或曲面遮挡板可有效降低后机身侧壁面对应混合管后段的局部区域最高温度,两种方式均可有效降低水平探测面以及铅垂面上方3~5 μm波段和8~14 μm波段红外辐射强度峰值;然而,加装遮挡套方式会影响旋翼下洗气流的导入,使3~5 μm波段的红外辐射强度在铅垂面下方较基准模型有小幅的增加。对后机身排气口进行出口修型,虽然对降低后机身3~5 μm和8~14 μm波段红外辐射强度的作用效果并不显著,但可以有效消除排气出口下方壁面的高温区,其中采用狭窄流道引气冷却方式可以使得后机身侧壁仅高于环境温度10 K左右。
A numerical investigation is performed to illustrate the effects of internal sheltering and outlet shaping on the surface temperature and infrared radiation characteristics of rear airframe with an integrating infrared suppressor. The results show that the internal sheltering between the mixing duct and rear airframe skin can decrease the peak temperature on the rear airframe side-surface corresponding to the mixing duct trailing section, either by a full-covering shelter or semi-covering contoured plate. Both schemes can effectively reduce the infrared radiation intensity in 3-5 μm and 8-14 μm bands detected in the horizontal detection plane as well as from the top in the vertical detection plane. However, the presence of a full-covering shelter affects the rotor downwash flow suction into the rear airframe, making the 3-5 μm infrared radiation intensity a little higher than the baseline case, when viewed from the bottom in the vertical detection plane. The outlet shaping could effectively improve the temperature distribution on the rear airframe side-surface, although it shows a weak role on reducing the infrared radiation intensity in 3-5 μm and 8-14 μm bands. By using the slit outlet structure to cool the lower side-surface of the rear airframe, the peak temperature could be maintained close to the ambient temperature, within a 10 K relative increase.
[1] PATERSON J. Overview of low observable technology and its effects on combat aircraft survivability[J]. Journal of Aircraft, 1999, 36(2):380-388.
[2] RAO G A, MAHULIKAR S P. New criterion for aircraft sus-ceptibility to infrared guided missiles[J]. Aerospace Science and Technology, 2005, 9(8):701-712.
[3] MAHULIKAR S P, SONAWANE H R, RAO G A. Infrared signature studies of aerospace vehicles[J]. Progress in Aerospace Sciences, 2007, 43(7-8):218-245.
[4] BARLOW B, PETACH A. Advanced design infrared suppressor for turbo-shaft engines[C]//Proceedings of the 33rd Annual National Forum of the American Helicopter Society, 1977.
[5] FRANCOIS T. Internal aerodynamics of infrared suppressors for helicopter engines[J]. Journal of the American Helicopter Society, 1988, 33(4):4-14.
[6] PRESZ W M, MORIN B L, GOUSY R G. Forced mixer lobes in ejector designs[J]. Journal of Propulsion and Power, 1988, 4(4):350-355.
[7] ZHANG J Z, SHAN Y, LI L G. Computation and validation of parameter effects on lobed mixer-ejector performances[J]. Chinese Journal of Aeronautics, 2005, 18(3):193-198.
[8] LIU Y H. Experimental and numerical research on high pumping performance mechanism of lobed exhauster-ejector mixer[J]. International Communications in Heat and Mass Transfer, 2007, 34(2):197-209.
[9] MAQSOOD A, BIRK A M. Improving the performance of a bent ejector with inlet swirl[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(6):061201.
[10] PAN C X, SHAN Y, ZHANG J Z. Parametric effects on internal aerodynamics of lobed mixer-ejector with curved mixing duct[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(6):061504.
[11] 张靖周, 单勇, 李立国. 直升机排气系统用波瓣喷管引射-混合式红外抑制器研究[J]. 航空学报, 2007, 28(1):32-36. ZHANG J Z, SHAN Y, LI L G. Investigation on lobed nozzle mixer-ejector infrared suppressor for helicopter exhaust system[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):32-36(in Chinese).
[12] BETTINI C, CRAVERO C, COGLIANDRO S. Multidisciplinary analysis of a complete infrared suppression system:GT2007-27721[R]. New York:ASME, 2007.
[13] MAHULIKAR S P, PRASAD H S S, POTNURU S K. Infrared signature suppression of helicopter engine duct based on "conceal and camouflage"[J]. Journal of Propulsion and Power, 2008, 24(3):613-618.
[14] 单勇, 张靖周. 波瓣喷管/气膜冷却混合管气动和红外辐射特性实验研究[J]. 航空学报, 2008, 29(2):309-314. SHAN Y, ZHANG J Z. Experimental on aerodynamic and infrared radiation characteristics of lobed nozzle/film cooling mixing duct[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):309-314(in Chinese).
[15] ZHANG J Z, PAN C X, SHAN Y. Progress in helicopter infrared signature suppression[J]. Chinese Journal of Aeronautics, 2014, 27(2):189-199.
[16] KANCLEBO S W. Boeing silorsky findings underscore RAH-66 stealth[J]. Aviation Week & Space Technology, 1993, 139(3):22-23.
[17] 唐正府, 张靖周, 单勇. 波瓣喷管-狭长出口弯曲混合管引射混合特性分析[J]. 航空动力学报, 2005, 20(6):978-982. TANG Z F, ZHANG J Z, SHAN Y. Investigation on ejecting and mixing characteristics of lobed nozzle with curved mixing duct and slot exit[J]. Journal of Aerospace Power, 2005, 20(6):978-982(in Chinese).
[18] 唐正府, 张靖周, 王先炜, 等. 排气系统与尾机身一体化红外抑制器实验分析[J]. 航空动力学报, 2007, 22(2):233-237. TANG Z F, ZHANG J Z, WANG X W, et al. Experimental research on infrared suppressor integrating the exhaust system with the tail part of a helicopter[J]. Journal of Aerospace Power, 2007, 22(2):233-237(in Chinese).
[19] 任利锋,张靖周,王先炜,等. 直升机后机身内埋式红外抑制器隐身性能分析[J]. 红外与激光工程,2011, 40(11):2091-2097. REN L F, ZHANG J Z, WANG X W, et al. Analysis of stealth properties on IR radiation suppressor embed inside helicopter rear airframe[J]. Infrared and Laser Engineering, 2011, 40(11):2091-2097(in Chinese).
[20] 潘丞雄, 张靖周, 单勇. 直升机机身表面温度场建模与数值分析[J]. 航空学报, 2011, 32(2):249-256. PAN C X, ZHANG J Z, SHAN Y. Modeling and analysis of helicopter skin temperature distributions[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):249-256(in Chinese).
[21] PAN C X, ZHANG J Z, SHAN Y. Effects of exhaust tem-perature on helicopter infrared signature[J]. Applied Thermal Engineering, 2013, 51(1-2):529-538.
[22] LU J W, WANG Q. Aircraft-skin infrared radiation characteristics modeling and analysis[J]. Chinese Journal of Aeronautics, 2009, 22(5):493-497.