电子电气工程与控制

一种IRST双机协同被动探测机动目标定位新方法

  • 张峰
展开
  • 洛阳电光设备研究所, 洛阳 471009

收稿日期: 2019-03-07

  修回日期: 2019-04-08

  网络出版日期: 2019-11-07

A new method for double IRST cooperative passive detection and positioning for maneuvering target

  • ZHANG Feng
Expand
  • Luoyang Institute of Electro-Optical Equipment, AVIC, Luoyang 471009, China

Received date: 2019-03-07

  Revised date: 2019-04-08

  Online published: 2019-11-07

摘要

针对红外搜索跟踪系统(IRST)双机协同被动探测定位作战使用中,机动目标建模与实际运动失配造成定位误差偏大的问题,研究了一种基于曲线模型的自适应滤波新方法。该方法改进了传统方法根据方向角估计转弯率以及基于帧间插分线加速度估计切向加速度的思路,将转弯率及线加速度联合作为状态变量进行了状态扩维,并推导了扩维后的过程噪声协方差表达式,在缓解传统两层滤波结构带来的计算量大问题外,也提高了切向加速度的估计精度。另外基于反正切函数的值域,结合方向角在四象限间的转移关系,优化了方向角的设计。通过IRST双机协同仿真实例,验证了所提方法对机动目标的适应性更强、目标定位精度更高。

本文引用格式

张峰 . 一种IRST双机协同被动探测机动目标定位新方法[J]. 航空学报, 2020 , 41(2) : 322988 -322988 . DOI: 10.7527/S1000-6893.2019.22988

Abstract

When Infrared Search and Track (IRST) System works in double station cooperative detection and positioning in operational use, it is difficult to match a maneuvering target model with the actual target motion, which worses position estimation error. Therefore, an adaptive filtering algorithm based on curvilinear model is proposed. The method here shifts the thinking that turning angular velocity is estimated by direction angle and tangential acceleration is estimated by inserted acceleration in traditional method. In this paper, turning angular velocity and target acceleration is both treated as augmented state variable and its corresponding process noise covariance expression is derived, which greatly decreases the calculation burden of traditional two-layer filtering structure, as well as improving the estimation accuracy to tangential acceleration. In the meanwhile, the paper optimizes the heading angle calculation method based on library function "atan2()" in embedded software and its transfer relationship between four quadrants. It demonstrates that the proposed method has the better adaptation to maneuvering target and has better positioning accuracy through double IRST cooperative simulation instance.

参考文献

[1] 刘海燕, 赵宗贵, 刘熹. "当前"统计模型机动目标跟踪的改进算法[J].军事运筹与系统工程, 2007, 21(1):51-54. LIU H Y, ZHAO Z G, LIU X. An improved maneuvering target tracking algorithm based on "CS" model[J]. Military Operations Research and Systems Engineering, 2007, 21(1):51-54(in Chinese).
[2] 黄伟平, 徐毓, 王杰. 基于"当前"统计模型的转弯机动跟踪算法[J].控制与决策, 2011, 26(9):1412-1416. HUANG W P, XU Y, WANG J. Algorithm based on modified current statistic mode for turn maneuver[J]. Control and Decision, 2011, 26(9):1412-1416(in Chinese).
[3] 周宏仁. 机动目标"当前"统计模型与自适应跟踪算法[J]. 航空学报, 1983, 4(1):73-86. ZHOU H R.A "Current" statistical model and adaptivetracking algorithm for maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 1983, 4(1):73-86(in Chinese).
[4] 黄伟平, 徐毓, 王杰. 基于改进"当前"统计模型的非线性机动目标跟踪算法[J].控制理论与应用, 2011, 28(12):1723-1728. HUANG W P, XU Y, WANG J. A nonlinear maneuver-tracking algorithm based on modified current statistical model[J]. Control Theory &Applications, 2011, 28(12):1723-1728(in Chinese).
[5] LI X R, VESSELIN P J. Survey of maneuvering target tracking, part I:Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1333-1364.
[6] ZHOU H R. Tracking of maneuvering target[D]. Minneapolis:University of Minnesota, 1984.
[7] 范小军, 刘峰, 秦勇. 基于STF的"当前"统计模型及自适应跟踪算法[J]. 电子学报, 2006, 34(6):981-984. FAN X J, LIU F, QIN Y. Current statistic model and adaptive tracking algorithm based on strong tracking filter[J]. Acta Electronica Sinica, 2006, 34(6):981-984(in Chinese).
[8] MURAT E, ATHERTON D P. Maneuvering target tracking using adaptive turn rate models in the interacting multiple model algorithm[C]//Proceedings of the 35th Conference on Decision and Control, 1996:3151-3156.
[9] SUN F M, MA Y H, XU E. Maneuvering target tracking approaches based on turning rate estimation[C]//The 3rd International Symposium on Intelligent Information Technology Application, 2009:213-216.
[10] 李涛.曲线模型的半自适应交互多模型跟踪方法[J]. 控制理论与应用,2005,22(4):557-561. LI T. Half adaptive interactive multiple-model tracking algorithm of curvilinear model[J]. Control Theory & Applications, 2005,22(4):557-561(in Chinese).
[11] 杨金龙, 姬红兵刘娟丽. 被动多传感器自适应曲线模型跟踪新算法[J]. 控制与决策, 2011, 26(8):1126-1130. YANG J L, JI H B, LIU J L. Adaptive curvilinear model based target tracking algorithm for multiple passive sensors[J]. Control and Decision, 2011, 26(8):1126-1130(in Chinese).
[12] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269.
[13] 朱剑辉, 方洋旺, 张平, 等. 双机协同定位误差分析的研究[J]. 电光与控制, 2012, 19(6):21-25. ZHU J H, FANG Y W, ZHANG P, et al. Error analysis in dual-aircraft cooperative locating[J]. Electronics Optics & Control, 2012, 19(6):21-25(in Chinese).
[14] 孙福明, 吴秀清, 段曼妮. 曲线模型的自适应跟踪算法[J].中国科学技术大学学报, 2007, 37(12):1455-1460. SUN F M, WU X Q, DUAN M N. Adaptive tracking algorithm of curvilinear model[J]. Journal of University of Science and Technology of China, 2007, 37(12):1455-1460(in Chinese).
文章导航

/