基于非结构动网格技术和格心型有限体积方法,提出一种改进的非定常激波装配算法,进一步拓展了其在包含有运动激波的非定常流场的应用范围。首先,针对激波在直/曲壁面传播这类问题,分别建立了壁面间断节点的运动模型;其次,为保证激波在大范围运动时装配阵面不产生失真,基于Bézier曲线拟合方法实现了间断节点分布的自动重构;接着,通过嵌入局部网格自动重构模块,提高了算法的计算效率和自动化程度;最后,对于激波相交点的运动,设计了一种根据位移推算速度的方法进行装配。数值算例表明,所提算法能够有效地处理激波传播问题,相比激波捕捉方法可以提取更多的流场信息,同时可以获得流场间断更加直观清晰的图谱。
Based on the unstructured dynamic grids technique and the cell-centered finite volume method, an improved unsteady shock-fitting algorithm is proposed to deal with unsteady flow containing moving shock waves. First, for the problem of shock wave propagating along the straight/curved wall, the motion models of wall discontinuity nodes are built respectively. Second, automatically distributing the discontinuity nodes on the basic of Bézier curve fitting method is realized to ensure fitted shock wave fronts move in a wide range without distortion. Then, by embedding the local module with automatic re-meshing, the efficiency and automation of the algorithm are significantly improved. Finally, for the motion of shock wave intersection point, a method of calculating velocity vector using displacement is designed to yield a fitting solution. Several simulation results show that the proposed algorithm can effectively deal with shock wave propagation problem. Compared with the shock-capturing method, the proposed method can extract much more flow field information and obtain a more straightforward and clearer map of flow field discontinuity.
[1] CASPER J, CARPENTER M H. Computational considerations for the simulation of shock-induced sound[J]. SIAM Journal on Scientific Computing, 1998, 19(3):813-828.
[2] ARORA M, ROE P L. On postshock oscillations due to shock capturing schemes in unsteady flows[J]. Journal of Computational Physics, 1997, 130(1):25-40.
[3] ZAIDE D, ROE P L. Shock capturing anomalies and the jump conditions in one dimension:AIAA-2011-3686[R]. Reston, VA:AIAA, 2011.
[4] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43:163-194.
[5] JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4):1213-1237.
[6] MORETTI G. Computation of flows with shocks[J]. Annual Review of Fluid Mechanics, 1987, 19(1):313-337.
[7] NASUTI F, ONOFRI M. Analysis of unsteady supersonic viscous flows by a shock-fitting technique[J]. AIAA Journal, 1996, 34(7):1428-1434.
[8] SALAS M D. A shock-fitting primer[M]. Boca Raton, FL:CRC Press, 2009:115-124.
[9] PACIORRI R, BONFIGLIOLI A. A shock-fitting technique for 2D unstructured grids[J]. Computers & Fluids, 2009, 38(3):715-726.
[10] BONFIGLIOLI A, GROTTADAUREA M, PACIORRI R, et al. An unstructured, three-dimensional, shock-fitting solver for hypersonic flows[J]. Computers & Fluids, 2013, 73:162-174.
[11] ZOU D Y, XU C G, DONG H B, et al. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes[J]. Journal of Computational Physics, 2017, 345:866-882.
[12] BONFIGLIOLI A, PACIORRI R, CAMPOLI L. Unsteady shock-fitting for unstructured grids[J]. International Journal for Numerical Methods in Fluids, 2016, 81(4):245-261.
[13] BONFIGLIOLI A, PACIORRI R, CAMPOLI L, et al. Development of an unsteady shock-fitting technique for unstructured grids[C]//30th International Symposium on Shock Waves 2. Berlin:Springer, 2017:1501-1504.
[14] 刘君, 邹东阳, 董海波. 基于非结构变形网格的间断装配法原理[J]. 气体物理, 2017, 2(1):13-20. LIU J,ZOU D Y,DONG H B. Principle of new discontinuity fitting technique based on unstructured moving grid[J]. Physics of Gases, 2017, 2(1):13-20(in Chinese).
[15] 邹东阳, 刘君, 邹丽. 可压缩流动激波装配在格心型有限体积法中的应用[J]. 航空学报, 2017, 38(11):121363. ZOU D Y, LIU J, ZOU L. Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):121363(in Chinese).
[16] 常思源, 邹东阳, 刘君. 自适应间断装配法模拟弹道靶中超高速弹丸发射[J]. 实验流体力学, 2019, 33(2):23-29. CHANG S Y, ZOU D Y, LIU J. Simulating hypersonic projectile launching process in the ballistic range by adaptive discontinuity fitting solver technique[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2):23-29(in Chinese).
[17] CHANG S Y, BAI X Z, ZOU D Y, et al. An adaptive discontinuity fitting technique on unstructured dynamic grids[J]. Shock Waves, 2019, 29:1103-1115.
[18] 刘君, 徐春光, 白晓征. 有限体积法和非结构动网格[M]. 北京:科学出版社, 2016:42-163. LIU J, XU C G, BAI X Z. Finite volume methods and unstructured dynamic grids technique[M]. Beijing:Science Press, 2016:42-163(in Chinese).
[19] 徐春光, 董海波, 刘君. 基于单元相交的混合网格精确守恒插值方法[J]. 爆炸与冲击, 2016, 36(3):305-312. XU C G, DONG H B, LIU J. An accurate conservative interpolation method for the mixed grid based on the intersection of grid cells[J]. Explosion and Shock Waves, 2016, 36(3):305-312(in Chinese).
[20] BÉZIER P. Numerical control:Mathematics and applications[M]. London:Wiley, 1972.
[21] SHEWCHUK J R. Triangle:Engineering a 2D quality mesh generator and Delaunay triangulator[C]//Workshop on Applied Computational Geometry. Berlin:Springer, 1996:203-222.
[22] KLEINE H, RITZERFELD E, GRÖNIG H. Shock wave diffraction-New aspects of an old problem[M]//Shock waves@Marseille IV. Berlin:Springer, 1995:117-122.
[23] HILLIER R. Computation of shock wave diffraction at a ninety degrees convex edge[J]. Shock Waves, 1991, 1(2):89-98.
[24] RIPLEY R C, LIEN F S, YOVANOVICH M M. Numerical simulation of shock diffraction on unstructured meshes[J]. Computers & Fluids, 2006, 35(10):1420-1431.
[25] 詹东文, 杨剑挺, 杨基明, 等. 一种形状可控的激波增强管道型线设计新方法[J]. 航空学报, 2016, 37(8):2408-2416. ZHAN D W, YANG J T, YANG J M, et al. A new method of wall profile design for shape-controllable shock wave enhancement[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2408-2416(in Chinese).
[26] 詹东文. 一种激波增强管壁型线设计方法[D]. 合肥:中国科学技术大学, 2018:48. ZHAN D W. An investigation of the channel profile design for shock wave enhancement[D]. Hefei:University of Science and Technology of China, 2018:48(in Chinese).
[27] 袁雪强. 弯曲爆震管中爆震传播特性及弯曲管道射流起爆机理研究[D]. 长沙:国防科技大学, 2015:29-30. YUAN X Q. Characteristics of detonation wave propagation and detonation initiation via hot jet in bend tubes[D]. Changsha:National University of Defense Technology, 2015:29-30(in Chinese).