流体力学与飞行力学

亚声速矩形射流的噪声辐射特性和声源分布

  • 张俊龙 ,
  • 雷红胜 ,
  • 田昊 ,
  • 李杰
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心 气动噪声控制重点实验室, 绵阳 621000

收稿日期: 2019-08-15

  修回日期: 2019-09-11

  网络出版日期: 2019-10-24

Noise radiation characteristics and source distribution of subsonic rectangular jet

  • ZHANG Junlong ,
  • LEI Hongsheng ,
  • TIAN Hao ,
  • LI Jie
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-08-15

  Revised date: 2019-09-11

  Online published: 2019-10-24

摘要

基于射流噪声模拟试验台,对出口面积相同的圆形喷口及宽高比分别为1、1.5、2、10的矩形喷口亚声速射流的远场噪声辐射特性和噪声源分布位置进行了较为系统的研究。通过远场噪声测量,获得了不同宽高比矩形喷口在不同方位角平面的射流噪声频谱分布结果相对于圆形射流的差异,揭示了矩形射流潜在的降噪潜力。通过基于波束成形算法的传声器阵列,得到了矩形射流噪声源峰值位置随频率的变化情况,系统分析了射流速度、方位角、宽高比等参数对矩形射流噪声源分布的影响。射流速度和方位角对矩形射流噪声源分布的归一化结果影响很小,而宽高比对矩形射流噪声源分布有较大影响:随着矩形宽高比的增加,矩形射流低频段噪声源向上游偏移,高频段噪声源向下游偏移。

本文引用格式

张俊龙 , 雷红胜 , 田昊 , 李杰 . 亚声速矩形射流的噪声辐射特性和声源分布[J]. 航空学报, 2020 , 41(2) : 123386 -123386 . DOI: 10.7527/S1000-6893.2019.23386

Abstract

The far-field radiation characteristic and the noise source distribution of rectangular jet with aspect ratios 1, 1.5, 2, 10 are measured based on the jet noise simulator and the results are analyzed. The differences of the far-field noise frequency spectrum at specified azimuth plane between the round jet and the rectangular jet with different aspect ratios are presented, which shows the noise reduction potential of the rectangular nozzles. The changing of jet noise peak location with frequency of rectangular jet is obtained through the microphone array with beamforming algorithm. The influences of jet velocity, azimuth angle, and aspect ratio on the rectangular jet noise source distribution are systematically analyzed. The jet velocity and azimuth angle have little effect on the normalized jet noise source distribution, whereas the aspect ratio has a large impact. With the increase of the aspect ratio, the low frequency noise peak of rectangular jet moves upstream, and the high frequency noise peak moves downstream.

参考文献

[1] POWELL A. On the noise emanating from a two-dimensional jet above the critical pressure[J]. Aeronautical Quarterly, 1953, 4(2):103-122.
[2] TAM C K W, AURIAULT L.Jet mixing noise from fine-scale turbulence[J]. AIAA Journal, 1999, 37(2):145-153.
[3] 汪海洋, 李晓东. 超声速喷流啸声的控制方法[J]. 推进技术, 2007, 28(2):211-215. WANG H Y, LI X D. Control methods for supersonic jet screech tones[J]. Journal of Propulsion Technology, 2007, 28(2):211-215(in Chinese).
[4] BRIDGES J, WERNET M P. Turbulence measurements of rectangular nozzles with bevel:AIAA-2015-0228[R]. Reston, VA:AIAA, 2015.
[5] MUNRO S E, AHUJA K K. Aeroacoustics of a high aspect-ratio jet:AIAA-2003-3323[R]. Reston, VA:AIAA, 2003.
[6] BRIDGES J. Acoustic measurements of rectangular nozzles with bevel:NASA/TM-2012-217674[R]. Washington, D.C.:NASA, 2012.
[7] TAM C K W, ZAMAN K M. Subsonic jet noise from non-axisymmetric and tabbed nozzles[J]. AIAA Journal, 2000, 38(4):592-599.
[8] PALIATH U, MORRIS P J. Prediction of jet noise from rectangular nozzles:AIAA-2006-0618[R]. Reston, VA:AIAA, 2006.
[9] HROMISIN S M, AKATSUKA J, MCLAUGHLIN D K, et al. Aeroacoustic performance of multi-stream, rectangular, supersonic jets:AIAA-2019-1301[R]. Reston, VA:AIAA, 2019.
[10] CRAWLEY M, FISCHER M K, SAMIMY M. Control of a supersonic rectangular jet using plasma actuators:AIAA-2012-2211[R]. Reston, VA:AIAA, 2012.
[11] MASSEY K C, AHUJ K K, GAETA R. Noise scaling for unheated low aspect ratio rectangular jets:AIAA-2004-2946[R]. Reston, VA:AIAA, 2004.
[12] WESTLEY R, WOOLLEY J H. An investigation of the near noise fields of a choked axisymmetric air jet[C]//Proceedings of AFOSR-UTIAS Symposium on Aerodynamic Noise. Toronto:University of Toronto Press, 1968:147-167.
[13] AHUJA K, TESTER B, TANNA H. Calculation of farfield jet noise spectra from near field measurements with true source location[J]. Journal of Sound and Vibration, 1987, 116(3):415-426.
[14] NICK P B, AHUJA K K. Subsonic jet noise source location as a function of nozzle geometry:AIAA-2019-0250[R]. Reston, VA:AIAA, 2019.
[15] LAUFER J, SCHLINKER R, KAPLAN R E. Experiments on supersonic jet noise[J]. AIAA Journal, 1976, 14(4):489-497.
[16] FISHER M J, HARPER B M, GLEGG S. Jet engine noise source location:The polar correlation technique[J]. Journal of Sound and Vibration, 1977, 51(1):23-54.
[17] WATTS M E, MOSHER M, BARNES M J. The microphone array phased processing system(MAPPS):AIAA-1996-1714[R]. Reston, VA:AIAA, 1996.
[18] PODBOY G G, BRIDGES J E, HENDERSON B S. Phased array noise source localization measurements of an F404 nozzle plume at both full and model scale:GT2010-22601[R]. New York:ASME, 2010.
[19] VENKATESH S, POLAK D, NARAYANAN S. Phased array design, validation, and application to jet noise source localization:AIAA-2000-1934[R]. Reston, VA:AIAA, 2000.
[20] LEE S S, BRIDGES J. Phased-array measurements of single flow hot jets:AIAA-2005-2842[R]. Reston, VA:AIAA, 2005.
[21] TESTER B J, GLEGG S A L. A review of engine noise source diagnostic methods for static engine tests, with phased array and polar correlation techniques:AIAA-2008-2854[R]. Reston, VA:AIAA, 2008.
[22] JAMES P E, PRAVEEN P, PATRICK V, et al. Acoustic source localization of rectangular jets using large eddy simulation with numerical phased arrays:AIAA-2014-0179[R]. Reston, VA:AIAA, 2014.
[23] SIMONICH J C, NARAYANAN S, SCHLINKER R H. Facility and data quality issues for scale-model jet noise testing:AIAA-2003-1057[R]. Reston, VA:AIAA, 2003.
[24] SAE. Standard values of atmospheric absorption as a function of temperature and humidity:SAE Standard ARP866A[S]. New York:SAE, 1975.
[25] THOMAS J M. Aeroacoustic measurements[M]. Berlin:Springer, 2002:109-117.
文章导航

/