The propeller design method based on the blade element momentum theory and the vortex theory has the problem of thrust deviation and cannot guarantee high efficiency due to the difference of the aerodynamic force of blade element between the design and the real situations. In order to solve this problem, the design is corrected by the numerical simulation of the propeller. Assuming that aerodynamic force of blade element along the radial direction is constant, the aerodynamic force can be inversely solved by numerical simulation results. Then the propeller is redesigned by the obtained aerodynamic force to establish a quick design method of propeller. The results show that the proposed design method can satisfy the design thrust in the small propeller design for solar energy UAV, and improve propeller efficiency by 2.75% compared with the traditional design method. And the efficiency of the propeller is further improved by 3.95% compared with the traditional design method after optimizing the airfoil of the propeller. Moreover, this method only needs to perform a small amount of CFD calculation, and the design cycle is shorter than directly using the numerical simulation to optimize the chord length and the twist angle distribution of the propeller.
[1] LARRABEE E E. Practical design of minimum induced loss propellers[C]//Wichita:Business Aircraft Meeting and Exposition, 1979.
[2] ANGELO S D, BERARDI F, MINISCI E. Aerodynamic performances of propellers with parametric considerations on the optimal design[J]. The Aeronautical Journal, 2002, 106:1-34.
[3] 项松, 王吉, 张利国, 等. 一种高效率螺旋桨设计方法[J]. 航空动力学报, 2015, 30(1):136-141. XIANG S, WANG J, ZHANG L G, et al. A design method for high efficiency propeller[J]. Journal of Aerospace Power, 2015, 30(1):136-141(in Chinese).
[4] 项松, 佟刚, 吴江, 等. 某型三叶螺旋桨的设计及性能试验[J]. 航空动力学报, 2016, 31(8):1793-1798. XIANG S, TONG G, WU J, et al. Design and performance test of a kind of three-blade propeller[J]. Journal of Aerospace Power, 2016, 31(8):1793-1798(in Chinese).
[5] 翟若岱. 太阳能飞机高效率螺旋桨设计关键技术研究[D]. 沈阳:沈阳航空航天大学, 2017. ZHAI R D. Research on key technology of high efficiency propeller design for solar powered aircraft[D]. Shenyang:Shenyang Aerospace University, 2017(in Chinese).
[6] 许建华, 宋文萍, 刘俊. 基于NS方程的螺旋桨气动反设计与优化设计方法研究[C]//第十五届全国计算流体力学会议, 2012:727-731. XU J H, SONG W P, LIU J. Investigation of inverse design and optimization design method for propellers based on Navier-Stokes equations[C]//The 15th National Conference on Computational Fluid Dynamics, 2012:727-731(in Chinese).
[7] 梁撑刚, 郁新华, 龚军锋. 一种无人机螺旋桨的快速优化设计方法[J]. 航空计算技术, 2017, 47(2):76-79. LIANG C G, YU X H, GONG J F. A quick approach to optimum design of UAV propeller[J]. Aeronautical Computing Technique, 2017, 47(2):76-79(in Chinese).
[8] 焦俊, 宋笔锋, 张玉刚, 等. 高空飞艇螺旋桨优化设计与气动性能车载试验[J]. 航空动力学报, 2017, 23(1):196-202. JIAO J, SONG B F, ZHANG Y G, et al. Optimal design and truck-mounted testing of aerodynamic performance for the propeller of high altitude airship[J]. Journal of Aerospace Power, 2017, 23(1):196-202(in Chinese).
[9] 刘芳, 杜绵银, 岳良明, 等. 高空低雷诺数高效螺旋桨设计[C]//第三届中国航空科学技术大会论文集, 2017:15-21. LIU F, DU M Y, YUE L M, et al. High efficiency propeller design at low-Reynolds number and high-altitude[C]//The 3rd China Aeronautical Science and Technology Conference, 2017:15-21(in Chinese).
[10] KWON H, YI S, KIM T, et al. Aerodynamic performances of propellers with parametric considerations on the optimal design[C]//31st AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2013.
[11] MORGADO J, ABDOLLAHZADEH M, SILVESTRE M A R, et al. High altitude propeller design and analysis[J]. Aerospace Science and Technology, 2015, 45:398-407.
[12] YONEZAWA K, ABE K, SUNADA S, et al. Propeller design and loss mechanisms in low-Reynolds-number flows[J]. Journal of Propulsion and Power, 2016, 32(6):1378-1385.
[13] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006. LIU P Q. Theory and application of airscrew[M]. Beijing:Beihang University Press, 2006(in Chinese).
[14] 程晓亮, 李杰. 螺旋桨滑流对机翼气动特性影响的方法研究[J]. 科学技术与工程, 2011, 11(14):3229-3235. CHENG X L, LI J. Unsteady computational method for the propeller/wing interaction[J]. Science Technology and Engineering, 2011, 11(14):3229-3235(in Chinese).
[15] 王红波, 祝小平, 周洲, 等. 太阳能无人机螺旋桨滑流气动特性分析[J]. 西北工业大学学报, 2015, 33(6):910-920. WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic investigation on propeller slipstream flows for solar powered airplanes[J]. Journal of Northwestern Polytechnical University, 2015, 33(6):910-920(in Chinese).
[16] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9):2669-2678. WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese).
[17] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[18] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[19] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
[20] MORGADO J, VIZINHO R, SILVESTRE M A R, et al. XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils[J]. Aerospace Science and Technology, 2016, 52:207-214.
[21] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.