电子电气工程与控制

模块化可重构卫星在轨自重构的分层规划

  • 王博 ,
  • 叶东 ,
  • 孙兆伟 ,
  • 唐生勇 ,
  • 陈欣
展开
  • 1. 哈尔滨工业大学 卫星技术研究所, 哈尔滨 150001;
    2. 上海宇航系统工程研究所, 上海 201109;
    3. 北京航天长征飞行器研究所, 北京 100076

收稿日期: 2019-01-15

  修回日期: 2019-03-08

  网络出版日期: 2019-09-20

基金资助

国家自然科学基金(61603115,91638301,51875119);中国博士后科学基金(2015M81455);2015年黑龙江省博士后资助经费(LBH-Z15085)

Hierarchical planning for on-orbit self-reconfiguration of modular reconfigurable satellites

  • WANG Bo ,
  • YE Dong ,
  • SUN Zhaowei ,
  • TANG Shengyong ,
  • CHEN Xin
Expand
  • 1. Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150001, China;
    2. Aerospace System Engineering Shanghai, Shanghai 201109, China;
    3. Beijing Institue of Space Long March Vehicle, Beijing 100076, China

Received date: 2019-01-15

  Revised date: 2019-03-08

  Online published: 2019-09-20

Supported by

National Natural Science Foundation of China (61603115,91638301,51875119); China Postdoctoral Science Foundation(2015M81455);Postdoctoral Funding for Heilongjiang Province in 2015 (LBH-Z15085)

摘要

模块化可重构卫星具有组织灵活、操作方便、适应性强等特点,可以有效降低卫星研制和发射成本、提高卫星对紧急任务的响应速度、延长卫星寿命。重构规划问题对模块的具体移动方式进行求解,是实现自重构需要解决的核心问题之一。针对同构式旋转立方结构,给出其离散运动模型,推导出运动空间求解算法。为降低重构规划问题的不确定性和复杂程度,采用分层规划策略,将规划任务分解为设计中间构型的上层规划和求解实现中间构型移动方式的下层规划,每层规划内部独立进行求解。设计了利用Kuhn-Munkres算法实现上层规划的重构规划算法,使中间构型具有较小的结构跨度,特别适合在轨自重构的重构规划问题求解。仿真结果表明了所提规划策略和所设计规划算法的可行性和有效性。

本文引用格式

王博 , 叶东 , 孙兆伟 , 唐生勇 , 陈欣 . 模块化可重构卫星在轨自重构的分层规划[J]. 航空学报, 2019 , 40(9) : 322912 -322912 . DOI: 10.7527/S1000-6893.2019.22912

Abstract

The modular reconfigurable satellite has the characteristics of flexible organization, convenient operation and strong adaptability, which can effectively reduce the satellite development and launch cost, improve the satellite's response speed to emergency missions, and extend the life of the satellite. Reconstruction planning problem solves the specific moving mode of the module, which is one of the core problems that need to be solved to realize self-reconfiguration. For the isomorphic rotating cubic structure, the discrete motion model is given and the motion space solving algorithm is derived. In order to reduce the uncertainty and complexity of the reconstruction planning problem, the hierarchical planning strategy is adopted to decompose the planning task into the upper layer planning of the intermediate design and the lower layer planning to obtain the intermediate configuration moving solution. The Kuhn-Munkres algorithm is used to realize the reconstruction planning algorithm of the upper layer planning, which makes the intermediate configuration have a small structural span, which is especially suitable for solving the reconstruction planning problem in the orbit self-reconstruction. The simulation results show the feasibility and effectiveness of the proposed planning strategy and the designed planning algorithm.

参考文献

[1] 王恩美,邬树楠,王晓明,等.大型卫星太阳能帆板的分布式振动控制[J]. 航空学报, 2018, 39(1):221479. WANG E M, WU S N, WANG X M, et al. Distributed vibration control for large satellite solar panels[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):221479(in Chinese).
[2] 常海涛, 黄攀峰,王明,等. 空间细胞机器人接管控制的分布式控制分配[J]. 航空学报, 2016,37(9):2864-2873. CHANG H T, HUANG P F, WANG M, et al. Distributed control allocation for cellular space robots in takeover control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2864-2873(in Chinese).
[3] YIM M, SHEN W M, SALEMI B, et al. Modular self-reconfigurable robot systems[J]. IEEE Robotics & Automation Magazine, 2007, 14(1):43-52.
[4] FUKUDA T, NAKAGAWA S, KAWAUCHI Y, et al. Self organizing robots based on cell structures-CKBOT[C]//IEEE International Workshop on Intelligent Robots. Piscataway, NJ:IEEE Press,1988.
[5] FUKUDA T. Approach to the dynamically reconfigurable robotic system[J]. Journal of Intelligent and Robotic Systems, 1998, 1(1):55-72.
[6] KUROKAWA H, TOMITA K, KAMIMURA A, et al. Distributed self-reconfiguration of M-TRAN Ⅲ modular robotic system[J]. The International Journal of Robotics Research, 2008, 27(3-4):373-386.
[7] KAMIMURA A, KUROKAWA H, YOSHIDA E, et al. Distributed adaptive locomotion by a modular robotic system, M-TRAN Ⅱ[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. Piscataway, NJ:IEEE Press, 2004.
[8] SALEMI B, MOLL M, SHEN W M. SUPERBOT:A deployable, multi-functional, and modular self-reconfigurable robotic system[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. Piscataway, NJ:IEEE Press, 2007.
[9] ZYKOV V, MYTILINAIOS E, DESNOYER M, et al. Evolved and designed self-reproducing modular robotics[J]. IEEE Transactions on Robotics, 2007, 23(2):308-319.
[10] SUH J W, HOMANS S B, YIM M. Telecubes:Mechanical design of a module for self-reconfigurable robotics[C]//IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE Press, 2002.
[11] VASSILVITSKⅡ S, KUBICA J, RIEFFEL E, et al. On the general reconfiguration problem for expanding cube style modular robots[C]//IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE Press, 2002.
[12] ALOUPIS G, SÉBASTIEN C, DAMIAN M, et al. Linear reconfiguration of cube-style modular robots[J]. Computational Geometry:Theory and Applications, 2009, 42(6-7):652-663.
[13] ROMANISHIN J W, GILPIN K, CLAICI S, et al. 3D M-Blocks:Self-reconfiguring robots capable of locomotion via pivoting in three dimensions[C]//IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE Press, 2015.
[14] ROMANISHIN J W, GILPIN K, RUS D. M-blocks:Momentum-driven, magnetic modular robots[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2013.
[15] SUNG C R, BERN J, ROMANISHIN J W, et al. Reconfiguration planning for pivoting cube modular robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2015:1933-1940.
[16] 周际鹏. 一类细长桁架式航天器动力学特性研究[D]. 哈尔滨:哈尔滨工业大学,2017. ZHOU J P. Dynamic characteristics of a kind of slender truss spacecraft[D]. Harbin:Harbin Institute of Technology, 2017(in Chinese).
[17] 殷剑宏, 吴开亚. 图论及其算法[M]. 合肥:中国科学技术大学出版社, 2003. YIN J H, WU K Y.Graph theory and its algorithm[M]. Hefei:China University of Science and Technology Press, 2003(in Chinese).
[18] PAMECHA A, CHIRIKJIAN G. A useful metric for modular robot motion planning[C]//IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE Press, 1997.
[19] ZHU H, ZHOU M C, ALKINS R. Group role assignment via a Kuhn-Munkres algorithm-based solution[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2012, 42(3):739-750.
[20] 童俊, 单甘霖. 基于修正Riccati方程与Kuhn-Munkres算法的多传感器跟踪资源分配[J]. 控制与决策, 2012, 27(5):747-751. TONG J, SHAN G L.Study of multi-sensor allocation based on modified Riccati equation and Kuhn-Munkres algorithm[J]. Control and Decision, 2012, 27(5):747-751(in Chinese).
[21] 王海英. 图论算法及其MATLAB实现[M].北京:北京航空航天大学出版社, 2010:96-101. WANG H Y. Graph theory algorithm and its MATLAB implementation[M]. Beijing:Beihang University Press, 2010:96-101(in Chinese).
[22] 常庭懋, 韩中庚. 用"匈牙利算法"求解一类最优化问题[J]. 信息工程大学学报,2004,5(1):60-62. CHANG T M, HAN Z G. Solution to a class optimization problem by utilizing the "Hungary Calculate Way"[J]. Journal of Information Engineering University, 2004,5(1):60-62(in Chinese).
文章导航

/