动态失速导致叶片气动载荷急剧变化,造成振动载荷激增,桨叶寿命大幅衰减。针对动态失速问题,从座头鲸胸鳍在动态倾转下取得良好的流动特性获得启示,据此模化出仿生正弦前缘翼面(包含3种波峰和2种波长),旨在实现动态失速控制。借助三维非定常数值模拟方法,采用运动网格技术,基于SC1095旋翼翼型,研究了仿生前缘动态失速流动控制机理及运动参数和来流速度的影响。结果表明:正弦前缘大幅度降低俯仰力矩系数峰值和阻力系数峰值;前缘波峰越大、波长越小,阻力系数峰值与俯仰力矩系数峰值的抑制效果越明显,虽然升力系数峰值减小,但其减小量远小于前两者,例如其中一种仿生翼使俯仰力矩系数峰值减小了47.7%,阻力系数峰值减小了36.4%,升力系数峰值减小14.1%;在最大迎角附近,正弦前缘能够缓和失速特性,使载荷变化更为平缓;在高平均迎角、低俯仰频率、低马赫数下,仿生翼动态失速控制效果更强,相比较而言迎角振幅的影响较小。
Dynamic stall causes dramatic changes in aerodynamic loads of blades, leading to a sharp increase in vibration loads and a significant decrease in blade life. To solve the dynamic stall problem of airfoil, this paper obtains inspiration from the good flow characteristics of humpback whale's pectoral fins under dynamic tilt, and models the bionic sinusoidal leading-edge airfoil (including three peaks and two wavelengths) to suppress dynamic stall. With the help of three-dimensional unsteady numerical simulation method, the control mechanism of bionic leading-edge on dynamic stall and the effects of motion parameters and inflow velocity on SC1095 rotor airfoil are studied by using the moving grid technology. The results show that the peak values of pitch moment coefficient and drag coefficient are reduced greatly by sinusoidal leading-edge. The bigger the wave peak and the smaller the wavelength of the leading-edge, the more obvious the suppression effect of the peak values of drag coefficient and pitch moment coefficient are. Although the peak value of lift coefficient decreases, the reduction is much smaller than that of the former two. For example, for one of the bionic wings, the peak pitch moment coefficient decreases by 47.7%, the peak drag coefficient decreases by 36.4%, whereas the peak lift coefficient decreases by 14.1%. At approximately the maximum angle of attack, the sinusoidal leading-edge can mitigate stall characteristics and make the load change more gently. At higher average angle of attack, low pitch frequency and low Mach number, the dynamic stall control effect of bionic wing is stronger. Comparatively speaking, amplitude of angle of attack matters less.
[1] BENSON R G, DADONE L U, GORMONT R E, et al. Influence of airfoils on stall flutter boundaries of articulated helicopter rotors[J]. Journal of the American Helicopter Society, 1973, 18(1):36-46.
[2] 许和勇,邢世龙,叶正寅,等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报,2017,38(6):120799. XU H Y, XING S L, YE Z Y, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120799(in Chinese).
[3] CARR L, MCALISTER K. The effect of a leading-edge slat on the dynamic stall of an oscillating airfoil:AIAA-1983-2533[R]. Reston, VA:AIAA, 1983.
[4] CARR L, WILDER M C, NOONAN K W, et al. Effect of compressibility on suppression of dynamic stall using a slotted airfoil[J]. Journal of Aircraft, 2001, 38(2):296-309.
[5] SINGH C, PEAKE D, KHADOGOLIAN V, et al. Parametric study of an air-jet vortex generator configuration to control rotorcraft retreating blade stall:AIAA-2005-1366[R]. Reston, VA:AIAA, 2005.
[6] 马奕扬,招启军,赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报,2017,38(3):120312. MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120312(in Chinese).
[7] MAI H, DIETZ G, GEISSLER W, et al. Dynamic stall control by leading edge vortex generators[J]. Journal of the American Helicopter Society, 2008, 53(1):26-36.
[8] FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1):51-60.
[9] WATTS P, FISH F. The influence of passive, leading edge tubercles on wing performance[C]//Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology, 2001.
[10] MIKLOSOVIC D, MURRAY M, HOWLE L, et al. Leading-edge tubercles delay stall on humpback whale flippers[J]. Physics of Fluids, 2004, 16(5):L39-L42.
[11] HANSEN K L, KELSO R M, DALLY P B. Performance variations of leading-edge tubercles for distinct airfoil profiles[J]. AIAA Journal, 2011, 49(1):185-194.
[12] PEDRO H T, KOBAYASHI M H. Numerical study of stall delay on humpback whale flippers:AIAA-2008-0584[R]. Reston, VA:AIAA, 2008.
[13] ZHANG M M, WANG G F, XU J Z, Aerodynamic control of low-Reynolds-number airfoil with leading-edge protuberances[J]. AIAA Journal, 2013, 51(8):1960-1971.
[14] STANWAY M J. Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion[D]. Cambridge, MA:Massachusetts Institute of Technology, 2008:26-31.
[15] HANSEN K L, KELSO R M, DALLY B B. Evolution of the streamwise vortices generated between leading edge tubercles[J]. Journal of Fluid Mechanics, 2016, 788:730-766.
[16] WEBER P W, HOWLE L E, MURRAY M M, et al. Computational evaluation of the performance of lifting surfaces with leading-edge protuberances[J]. Journal of Aircraft, 2011, 48(2):591-600.
[17] BORG J. The effect of leading edge serrations on dynamic stall[D]. Southampton:University of Southampton, 2012:39-48.
[18] 张仕栋, 胡文荣. 仿生波状前缘机翼动态失速控制的数值研究[J]. 水动力学研究与进展, 2015, 30(1):24-32. ZHANG S D, HU W R. The numerical study of bionic wavy leading-edge wing in dynamic stall control[J]. Chinese Journal of Hydrodynamics, 2015, 30(1):24-32(in Chinese).
[19] JOHARI H, HENOCH C, CUSTODIO D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11):2634-2642.
[20] GHARALI K, DAVID A J. Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity[J]. Journal of Fluids and Structures, 2013, 42:228-244.
[21] MCALISTER K W, PUCCI S L, MCCROSKERY W J, et al. An experimental study of dynamic stall on advanced airfoil section:NASA-TM-84245-VOL-2[R]. Washington, D.C.:NASA, 1982.
[22] BALDUZZI F, BIANCHINI A, MALECI R, et al. Critical issues in the CFD simulation of Darrieus wind turbines[J]. Renewable Energy, 2016, 85:419-435.
[23] FESZTY D, GILLIES E A, VEZZA M. Alleviation of airfoil dynamic stall moments via trailing-edge-flap flow control[J]. AIAA Journal, 2004, 42(1):17-25.
[24] CARR L W, MCALISTER K W, MCCROSKEY W J. Analysis of the development of dynamic stall based on oscillating airfoils experiments:NASA-TN-D-8382, A-6674[R]. Washington, D.C.:NASA, 1977.
[25] LORBER P F, CARTA F O. Airfoil dynamic stall at constant pitch rate and high Reynolds number:AIAA-1987-1329[R]. Reston, VA:AIAA, 1987.