When using the "dry stringer+wet skin" co-bonding process to manufacture hat stringer stiffened composite panels, the stringer hat often shows collapse deformation and uneven adhesive thickness after bonding. In order to improve the above problems and achieve high precision manufacture of the stiffened panels, the stringer de-formation data before and after bonding and the adhesive thickness data after bonding are collected through manufacture and profile and dimensional measurement of test panels. Free-body force analysis of the hat stringer during bonding is conducted to determine the main causes leading to the deformation of stringer. The analysis is verified by finite element simulation. The results show that the hat stringer does occur collapse deformation after bonding. The main causes of the deformation of the stringer are the pressure difference between inside and outside of the corner of stringer hat top and the insufficient pressure on the flange edge of stringer during bonding. Chamfering the stringer flange edge may reduce the degree of deformation.
[1] 赵渠森. 热压罐成型工艺[M]. 北京:机械工业出版社, 2003. ZHAO Q S. Autoclave molding process[M]. Beijing:China Machine Press, 2003(in Chinese).
[2] 王翾. 热压罐工艺仿真技术[J]. 航空制造技术, 2011(20):105-108. WANG X. Simulation technology of autoclave process[J]. Aeronautical Manufacturing Technology, 2011(20):105-108(in Chinese).
[3] HYER M W. Some observations on the cured shapes of thin unsymmetric laminates[J]. Journal of Composite Materials, 1981, 15(2):175-194.
[4] KIM K S, HAHN H T. Residual stress development during processing of graphite/epoxy composites[J]. Composites Science and Technology, 1989, 36(2):121-132.
[5] RADFORD D W, DIEFENDORF R J. Shape instabilities in composites resulting from laminate anisotropy[J]. Journal of Reinforced Plastics and Composites, 1993, 12(1):58-75.
[6] FERNLUND G, RAHMAN N, COURDJI R, et al. Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts[J]. Composites Part A:Applied Science & Manufacturing, 2002, 33(3):341-351.
[7] ALBERT C, FERNLUND G. Spring-in and warpage of angled composite laminates[J]. Composites Science & Technology, 2002, 62(14):1895-1912.
[8] TWIGG G, POURSARTIP A, FERNLUND G. Tool part interaction in composites processing:Part I:Experimental investigation and analytical model[J]. Composites Part A:Applied Science & Manufacturing, 2004, 35:121-133.
[9] WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(4):522-529.
[10] ZHANG J K, LI Z N, GUAN Z D, et al. Three-dimensional finite element simulation and prediction for process-induced deformation of thermoset composites[J]. Acta Metallurgica Sinica (English Letters), 2009, 26(1):174-178.
[11] JUN L, XUEFENG Y, YINGHUA L, et al. Thermo-viscoelastic analysis of the integrated T-shaped composite structures[J]. Composites Science and Technology, 2010, 70(10):1497-1503.
[12] WUCHER B, LANI F, PARDOEN T, et al. Tooling geometry optimization for compensation of cure-induced distortions of curved carbon/epoxy C-spar[J]. Composites Part A:Applied Science and Manufacturing, 2014, 56:27-35.
[13] JIANG T, XU J F, LIU W P, et al. Simulation and verification of cure-induced deformation by stages for integrated composite structure[J]. Acta Metallurgica Sinica (English letters), 2013, 30(5):61-66.
[14] 丁安心, 王继辉, 倪爱清, 等. 热固性树脂基复合材料固化变形解析预测研究进展[J]. 复合材料学报, 2018, 35(6):1361-1376. DING A X, WANG J H, NI A Q, et al. Progress in analytical prediction of curing deformation of thermosetting resin matrix composites[J]. Acta Materiae Compositae Sinica, 2018, 35(6):1361-1376(in Chinese).
[15] 王乾, 关志东, 蒋婷, 等. 纤维体积含量和富树脂对复合材料V型结构固化变形的影响[J]. 复合材料学报, 2018, 35(3):580-590. WANG Q, GUAN Z D, JIANG T, et al. Influence of fiber volume content and resin-rich area on process distortions of V-shaped composite parts[J]. Acta Materiae Compositae Sinica, 2018, 35(3):580-590(in Chinese).
[16] 蒲永伟, 湛利华. 航空先进复合材料帽型加筋构件制造关键技术探究[J]. 航空制造技术, 2015, 473(4):78-81. PU Y W, ZHAN L H. Research on key technologies for manufacturing advanced composite cap reinforced components in aviation[J]. Aeronautical Manufacturing Technology, 2015, 473(4):78-81(in Chinese).
[17] ZAHLAN N, O'NEILL J M. Design and fabrication of composite components; the spring-forward phenomenon[J]. Composites, 1989, 20(1):77-81.
[18] SARRAZIN H, KIM B, AHN S H, et al. Effects of processing temperature and layup on springback[J]. Journal of Composite Materials, 1995, 29(10):1278-1294.
[19] 魏冉, 贾丽杰, 晏冬秀, 等. 热固性复合材料结构固化回弹变形研究进展[J]. 航空制造技术, 2013, 443(23):104-107. WEI R, JIA L J, YAN D X, et al. Progress in research on resilience deformation of thermosetting composite structures during curing[J]. Aeronautical Manufacturing Technology, 2013, 443(23):104-107(in Chinese).
[20] 杨青, 刘卫平, 余木火, 等. 复合材料C型梁回弹变形影响因素权重分析[J]. 航空制造技术, 2017, 526(7):72-77. YANG Q, LIU W P, YU M H, et al. Weight analysis of influencing factors on springback deformation of composite C beams[J]. Aeronautical Manufacturing Technology, 2017, 526(7):72-77(in Chinese).
[21] 靳武刚. 碳纤维复合材料胶接工艺研究[J]. 航天制造技术, 2001(3):13-17. JIN W G. Study on bonding technology of carbon fiber composite[J]. Aeronautical Manufacturing Technology, 2001(3):13-17(in Chinese).
[22] 张丽薇, 罗瑞盈, 李进松, 等. 升温速率和胶层厚度对C/C复合材料弯曲性能的影响[J]. 炭素技术, 2015, 34(2):6-9. ZHANG L W, LUO R Y, LI J S, et al. Effect of heating rate and adhesive thickness on flexural properties of C/C composites[J]. Carbon Techniques, 2015, 34(2):6-9(in Chinese).