围绕如何降低基于椭圆球面波函数的非正交调制(PSWF-NPSM)系统误码率,降低信号检测复杂度,引入调制信号功率复用思想,提出基于功率复用的椭圆球面波函数非正交调制(PD-PSWF-NPSM)方法。该方法对载波信号按子波带进行功率分配,增加了调制信号最小欧式距离,降低了系统误码率;在接收端,提出基于检测统计量的串行干扰相消信号检测方法,依据不同支路信号间功率差异,对信号进行分离、检测。理论与仿真分析表明,该方法在不降低系统频带利用率、调制信号功率谱、峰均功率比特性前提下,能够有效提高系统误码性能,降低调制信号检测复杂度;与原非正交调制方法相比,当误比特率(BER)为10-5时,所提方法系统误码性能提升约1.7 dB。
To reduce the system error rate and detection complexity of non-Nrthogonal Pulse Modulation based on Prolate Spheroidal Wave Function (PSWF-NPSM), we introduce the idea of modulation signal power multiplexing, and propose Power Domain non-orthogonal multicarrier modulation based on PSWF (PD-PSWF-NPSM). The proposed method distributes power of carrier signal according to its waveband, increase the minimum Euclidean distance of modulation signal and reduces system error rate. At the receiving end, we propose successive interference cancellation detection method based on detection statistics, which separates and detects PSWF signal according to the power difference between different branch signals. Theoretical and simulation results show that the proposed method can effectively improve the system error performance and reduce the complexity of modulation signal detection without reducing the spectral efficiency, modulation signal power spectrum and peak-to-average power ratio characteristics. Compared with PSWF-NPSM, when Bit Error Ratio (BER) is 10-5, the system error performance of the proposed method is improved by about 1.7 dB.
[1] YU S L, SHIEH S L, HUANG Y M, et al. 5G new radio:Waveform, frame structure, multiple access, and initial access[J]. IEEE Communications Magazine, 2017, 6:64-71.
[2] CAI Y, QIN Z, CUI F, et al. Modulation and multiple access for 5G networks[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1):629-646.
[3] SAITO Y, KISHIYAMA Y, BENJEBBOUR A, et al. Non-orthogonal multiple access (NOMA) for cellular future radio access[C]//IEEE 77th Vehicular Technology Conference (VTC Spring). Piscataway, NJ:IEEE Press, 2013:1-5.
[4] ZHANG H, QIU Y, LONG K, et al. Resource allocation in NOMA based fog radio access networks[J]. IEEE Wireless Communications, 2018, 25(3):110-115.
[5] MOLTAFET M, AZMI P, MOKARI N, et al. Optimal and fair energy efficient resource allocation for energy harvesting enabled-PD-NOMA based HetNets[J]. IEEE Transactions on Wireless Communications, 2018, 17(3):2054-2067.
[6] MAHRUKH L, ARIFFIN N K, TARIK A L, et al. Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks:An overview[J]. Wireless Networks, 2018, 7:1-23.
[7] MIN K H, NGUYEN H V, KANG G M, et al. Device-to-device communications underlying an uplink SCMA system[J]. IEEE Access, 2019, 7:21756-21768.
[8] 袁志锋, 郁光辉, 李卫敏. 面向5G的MUSA多用户共享接入[J]. 电信网技术, 2015(5):28-31. YUAN Z F, YU G H, LI W M. Multi-user shared access for 5G wireless networks[J]. Telecommunications Network Technology, 2015(5):28-31(in Chinese).
[9] CHEN S, REN B, GAO Q, et al. Pattern division multiple access (PDMA)-a novel non-orthogonal multiple access for 5G radio networks[J]. IEEE Transactions on Vehicular Technology, 2016, 66(4):3185-3196.
[10] LUO J, TANG J, SO D K C, et al. A deep learning-based approach to power minimization in multi-carrier NOMA with SWIPT[J]. IEEE Access, 2019, 7:17450-17460.
[11] Qualcomm Incorporated. Candidate NR multiple access schemes[OL]. (2016-04-15)[2019-04-17]. http://www.3gpp.org/DynaReport/TDocExMtg--R1-84b--31661.htm.
[12] MAZO J E. Faster than Nyquist signaling[J]. The Bell System Technical Journal, 2014, 54(8):1451-1462.
[13] MAZO J E, LANDAU H. On the minimum distance problem for faster-than-Nyquist signaling[J]. IEEE Transactions on Information Theory, 1988, 34(6):1420-1427.
[14] CAO Q S, LIANG D Q. Study on modulation techniques free of orthogonality restriction[J]. Science in China, Series F, 2007, 50(6):889-896.
[15] LI D B. Overlapped multiplexing principle and an improved capacity on additive white Gaussian noise channel[J]. IEEE Access, 2017, 6:6840-6848.
[16] LIN P, WANG YF, LI D. Low-complexity multiple-signal joint decoding for overlapped x domain multiplexing signaling[J]. IET Communications, 2018, 12(11):1273-1282.
[17] SLEPIAN D, POLLAK H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I[J]. The Bell System Technical Journal, 1961, 40(1):43-46.
[18] 王红星, 陆发平, 刘传辉,等. 椭圆球面波信号间交叉项时频分布特性研究[J]. 电子与信息学报, 2017, 39(6):1319-1325. WANG H X, LU F P, LIU C H, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal[J]. Journal of Electronics & Information Technology, 2017, 39(6):1319-1325(in Chinese).
[19] MAHATA K, HYDER M. Frequency estimation from arbitrary time samples[J]. IEEE Transactions on Signal Processing, 2016, 64(21):5634-5643.
[20] 王红星, 赵志勇, 刘锡国, 等. 非正弦时域正交调制方法:中国.ZL200810159238.3[P]. 2011-02-02. WANG H X, ZHAO Z Y, LIU X G, et al. the non-sinusoidal orthogonal modulation in time domain:China. ZL2008159238.3[P]. 2011-02-02(in Chinese).
[21] CHEN Z N, WANG H X, LIU X G, et al. Maximal capacity non-orthogonal pulse shape modulation[J]. Chinese Journal of Aeronautics, 2015, 28(6):1699-1708.