通过对地球同步轨道(GEO)卫星运动特点的分析,阐明其对多普勒分辨率的影响。传统的双基合成孔径雷达(SAR)多普勒分辨率表达式由于不考虑雷达平台加速度矢量带来的影响,并不适用于GEO星弹双基SAR系统。根据收发平台的双曲线轨迹对目标的回波多普勒特性影响,首先利用梯度方法推导了GEO星弹双基SAR系统的多普勒分辨率表达式;随后详细地分析了GEO卫星与导弹的空间几何关系及多普勒参数,特别是加速度矢量对多普勒分辨率的影响。仿真结果验证了所推导多普勒分辨率表达式的有效性,其有助于双基SAR理论系统完整性的提高,为后续系统设计及应用实践提供理论支撑。
By analyzing the motion characteristic of Geosynchronous Earth Orbit (GEO) satellite, the influence of GEO satellite on Doppler resolution is expounded. Without considering the acceleration of the platform, the expression of Doppler resolution of traditional bistatic Synthetic Aperture Radar (SAR) cannot be applied directly to geosynchronous-missile bistatic SAR. Firstly, based on the influence of curve trajectories of transmitter and receiver on Doppler characteristic of echo signal, the expression of Doppler resolution for geosynchronous-missile bistatic SAR is deduced with the gradient method. Then the impacts of geometrical configuration and Doppler parameters (especially the acceleration) on the Doppler resolution calculation are discussed in detail. Finally, the simulation results validate the proposed method for calculating Doppler resolution of geosynchronous-missile bistatic SAR. And this could increase the integrality of bistatic SAR theory system and provide theoretical support for the system design and application of bistatic SAR.
[1] CUMMING I G, WONG F. Digital processing of synthetic aperture radar data:Algorithms and implementation[M]. Norwood, MA:Artech House, 2005:1-10.
[2] DING Z, LIU L, TAO Z, et al. Improved motion compensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4378-4387.
[3] 毛新华, 朱岱寅, 朱兆达. 一种超高分辨率机载聚束SAR两维自聚焦算法[J]. 航空学报, 2012, 33(7):1289-1295. MAO X H, ZHU D Y, ZHU Z D, 2-D auto focus algorithm for ultra-high resolution airborne spotlight SAR imaging[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1289-1295(in Chinese).
[4] DAVISON G W, CUMMING I G. Signal properties of spaceborne squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3):611-617.
[5] NATROSHVILI K, LOFFELD O, NIES H, et al. Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2718-2727.
[6] NEO Y, WONG F, CUMMING I. Processing of azimuth-invariant bistatic SAR data using the range doppler algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):14-21.
[7] WANG Y, WANG J, ZHANG J, et al. Research on the resolution of bistatic SAR with geostationary illuminator and LEO receiver[C]//Proceedings of International Asia-pacific Conference on Synthetic Aperture Radar, 2011:174-177.
[8] YOUNIS M, METZIG R, KRIEGER G. Performance prediction of a phase synchronization link for bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letter, 2006, 3(3):429-433.
[9] ESPETER T, WALTERSCHIEID I, KLARE J, et al. Bistatic forward-looking SAR:Results of a spaceborne-airborne experiment[J]. IEEE Geoscience and Remote Sensing Letter, 2011, 8(4):765-768.
[10] SUN G C, XING M D, WANG Y, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4868-4880.
[11] HU C, LONG T, LIU Z, et al. An improved frequency domain focusing method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5514-5528.
[12] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1):6-43.
[13] MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L:A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth's surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2):8-23.
[14] 汤子跃, 张守融. 双站合成孔径雷达系统原理[M]. 北京:科学出版社, 2003:35-69. TANG Z Y, ZHANG S R. Principle guidance of bistatic synthetic aperture radar system[M]. Beijing:Science Press, 2003:35-69(in Chinese).
[15] CARDILLO G P. On the use of gradient to determine bistatic SAR resolution[C]//Proceedings of Antennas & Propagation Society International Symposium. Piscataway, NJ:IEEE Press, 1990, 2:1032-1035.
[16] CEHN J L, SUN G C, WANG Y, et al. An analytical resolution evaluation approach for bistatic GEOSAR based on local feature of ambiguity function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(14):2159-2169.
[17] XIE H T, AN D X, HUANG X T, et al. Research on spatial resolution of one-stationary bistatic ultrahigh frequency ultrawidebeam-ultrawideband SAR based on scattering target wavenumber domain support[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1782-1798.
[18] ESPETER T, WALTERSCHEID I, KLARE J, et al. Bistatic forward-looking SAR:Results of a spaceborne-airborne experiment[J]. IEEE Geoscience and Remote Sensing Letter, 2011, 8(4):765-768.
[19] PRENTISS N R. Depth of field for SAR with aircraft acceleration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(5):603-616.
[20] MOCCIA A, RENGA A. Spatial resolution of bistatic synthetic aperture radar:Impact of acquisition geometry on imaging performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3487-3503.
[21] SOUMEKH M. Synthetic aperture radar signal processing with MATLAB algorithm[M]. New York:Wiley, 1999:165-175.
[22] DESAI M D, JENKINS W K. Convelutional backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4):505-517.
[23] 李浩林, 陈露露, 张磊, 等. 一种适用于快速分解后向投影聚束SAR成像的自聚焦方法[J]. 航空学报, 2014, 35(7):2011-2018. LI H L, CHEN L L, ZHANG L, et al. An autofocus method for spotlight SAR imagery created by fast factorized back-projection[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):2011-2018(in Chinese).
[24] ULANDER L M H, HELLSTEN H, STENSTRÖM G. Synthetic aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3):760-776.