固体力学与飞行器总体设计

C/C复合材料的压缩强度分布与可靠性评估

  • 李湘郡 ,
  • 李彦斌 ,
  • 郭飞 ,
  • 吴邵庆
展开
  • 1. 东南大学 空天机械动力学研究所, 南京 211189;
    2. 东南大学 土木工程学院, 南京 211189;
    3. 东南大学 机械工程学院, 南京 211189

收稿日期: 2018-12-13

  修回日期: 2019-02-15

  网络出版日期: 2019-04-17

基金资助

国家自然科学基金(11802059);江苏省自然科学基金(BK20170656,BK20180062);江苏省"六大人才高峰"项目(KTHY-005)

Compression strength distribution and reliability assessment of C/C composites

  • LI Xiangjun ,
  • LI Yanbin ,
  • GUO Fei ,
  • WU Shaoqing
Expand
  • 1. Institute of Aerospace Machinery and Dynamics, Southeast University, Nanjing 211189, China;
    2. School of Civil Engineering, Southeast University, Nanjing 211189, China;
    3. School of Mechanical Engineering, Southeast University, Nanjing 211189, China

Received date: 2018-12-13

  Revised date: 2019-02-15

  Online published: 2019-04-17

Supported by

National Natural Science Foundation of China (11802059); Natural Science Foundation of Jiangsu Province (BK20170656,BK20180062); Six Talents Peaks Project in Jiangsu Province (KTHY-005)

摘要

针对碳/碳(C/C)复合材料力学性能离散的特点,开展穿刺C/C复合材料压缩强度分布与可靠性评估研究。首先通过残差分析确定用于强度分布分析的样本数量,然后通过线性回归分析获得两参数Weibull分布、正态分布及对数正态分布模型的参数,进而探究穿刺C/C复合材料的压缩强度分布规律,最后通过Kolmogorov-Smirnov检验、Anderson-Darling检验和极大似然方法对3种强度分布模型进行拟合优度检验。结果表明:用于获得穿刺C/C复合材料压缩强度分布的最少样本数量应不少于30;Weibull分布、正态分布和对数正态分布模型均可表征穿刺C/C复合材料的压缩强度分布,其中Weibull分布的拟合优度最高;基于强度分布模型可得到不同可靠度所对应的穿刺C/C复合材料的设计强度参考值。

本文引用格式

李湘郡 , 李彦斌 , 郭飞 , 吴邵庆 . C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019 , 40(8) : 222853 -222853 . DOI: 10.7527/S1000-6893.2019.22853

Abstract

Considering the discrete characteristics of Carbon/Carbon (C/C) composites, the compression strength distribution and reliability assessment of punctured C/C composites is studied. Firstly, the number of samples used for intensity distribution analysis is determined by residual analysis. Then the parameters of the two-parameter Weibull distribution, normal distribution, and lognormal distribution models are obtained by linear regression analysis. And then the distribution of compressive strength of punctured C/C composites is studied. Finally, the Kolmogorov-Smirnov test, the Anderson-Darling test, and the maximum likelihood method are used to test the goodness of the fit of the three distribution models. The results show that the minimum number of samples used to obtain the compressive strength distribution of punctured C/C composites should be no less than 30 and the Weibull distribution, normal distribution, and lognormal distribution models can all characterize the distribution of compressive strength of punctured C/C composites. The Weibull distribution has the highest goodness of fit. And based on the intensity distribution model, the reference values of designing punctured C/C composites with different reliabilities can be evaluated.

参考文献

[1] 李辉,张立同,曾庆丰,等. 2D C/SiC复合材料的可靠性评价[J]. 复合材料学报, 2007, 24(4):95-100. LI H, ZHANG L T, ZENG Q F, et al. Reliability analysis of 2D C/SiC composite[J]. Acta Materiae Compositae Sinica, 2007, 24(4):95-100(in Chinese).
[2] 周亚东, 费庆国,吴邵庆,等. C/SiC材料疲劳试验加载频率的数值研究[J]. 振动工程学报, 2016, 29(6):985-991. ZHOU Y D, FEI Q G, WU S Q, et al. Numerical investigation of the loading frequency for fatigue test of C/SiC materials[J]. Journal of Vibration Engineering, 2016, 29(6):985-991(in Chinese).
[3] CHEN S F, FEI Q G, JIANG D, et al. Determination of thermo-elastic parameters for dynamical modeling of 2.5D C/SiC braided composites[J]. Journal of Mechanical Science and Technology, 2018, 32(1):231-243.
[4] CALARD V, LAMON J. A probabilistic-statistical approach to the ultimate failure of ceramic-matrix composites-Part I:Experimental investigation of 2D woven SiC/SiC composites[J]. Composites Science & Technology, 2002, 62(3):385-393.
[5] CALARD V, LAMON J. A probabilistic-statistical approach to the ultimate failure of ceramic-matrix composites-Part Ⅱ:Macroscopic model[J]. Composites Science & Technology, 2002, 62(3):395-399.
[6] LU C, DANZER R, FISCHER F D. Fracture statistics of brittle materials:Weibull or normal distribution[J]. Physical Review E, 2002, 65(6):067102.
[7] 郭飞, 费庆国,李彦斌,等. 基于Weibull模型的C/C销钉剪切强度分布及本构关系[J/OL]. 复合材料学报, (2018-04-13)[2018-12-10]. https://doi.org/10.13801/j.cnki.fhclxb.20180412.001. GUO F, FEI Q G, LI Y B, et al. Shear strength distribution and constitutive model of C/C composite pins based on Weibull model[J/OL]. Acta Materiae Compositae Sinica, (2018-04-13)[2018-12-10]. https://doi.org/10.13801/j.cnki.fhclxb.20180412.001(in Chinese).
[8] BASU B, TIWARI D, KUNDU D, et al. Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?[J]. Ceramics International, 2009, 35(1):237-246.
[9] 严科飞, 张程煜,乔生儒,等. C/C复合材料室温面内剪切强度分布[J]. 机械强度, 2012, 34(6):912-915. YAN K F, ZHANG C Y, QIAO S R, et al. Statistical distribution of in-plane shear strength of C/C composite at room temperature[J]. Journal of Mechanical Strength, 2012, 34(6):912-915(in Chinese).
[10] DEY A K, KUNDU D. Discriminating among the log-normal, weibull, and generalized exponential distributions[J]. IEEE Transactionson Reliability, 2009, 58(3):416-424.
[11] DANZER R. Some notes on the correlation between fracture and defect statistics:Are Weibull statistics valid for very small specimens?[J]. Journal of the European Ceramic Society, 2006, 26(15):3043-3049.
[12] PAI S S, GYEKENYESI J P. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume-and surface-flaw-induced fracture in ceramics:NASA-TM-100890[R]. Washington, D.C.:NASA,1988.
[13] XU Y, CHENG L, ZHANG L, et al. Optimization of sample number for Weibull function of brittle materials strength[J]. Ceramics International, 2001, 27(2):239-241.
[14] DANZER R, LUBE T, SUPANCIC P. Monte Carlo simulations of strength distributions of brittle materials:Type of distribution, specimen and sample size[J]. Zeitschrift fur Metallkunde, 2001, 92(7):773-783.
[15] NOHUT S. Influence of sample size on strength distribution of advanced ceramics[J]. Ceramics International, 2014, 40(3):4285-4295.
[16] 费庆国, 张令弥,李爱群,等. 基于不同残差的动态有限元模型修正的比较研究[J]. 振动与冲击, 2005, 24(4):24-26. FEI Q G, ZHANG L M, LI A Q, et al. Evaluation of FE model updating using four kinds of residues[J]. Journal of Vibration and Shock, 2005, 24(4):24-26(in Chinese).
[17] 孙岩, 刘勇琼,廖英强. 针刺C/C复合材料剪切性能[J]. 宇航材料工艺, 2012, 42(3):91-95. SUN Y, LIU Y Q, LIAO Y Q. Shear properties of needled felt carbon/carbon composites[J]. Aerospace Materials & Technology, 2012, 42(3):91-95(in Chinese).
[18] 潘晋波, 崔万继,王富强,等. 针刺C/C复合材料层间剪切强度的研究[C]//第17届全国复合材料学术会议, 2012:927-930. PAN J B, CUI W J, WANG F Q, et al. Investigation on interlaminar shear strength of needled Carbon/Carbon composites[C]//17th National Conference on Composite Materials, 2012:927-930(in Chinese).
[19] HATTA H, GOTO K, AOKI T. Strengths of C/C composites under tensile, shear, and compressive loading:Role of interfacial shear strength[J]. Composites Science & Technology, 2005, 65(15):2550-2562.
[20] 赵卫, 乔玲,韩晓林,等. C/C-SiC复合材料的表面烧蚀模型及数值模拟[J]. 东南大学学报(自然科学版), 2011, 41(2):365-369. ZHAO W, QIAO L, HAN X L, et al. Surface ablation model and numerical simulation of C/C-SiC composites[J]. Journal of Southeast University(Natural Science Edition), 2011,41(2):365-369(in Chinese).
[21] COX D R. Further results on tests of separate families of hypotheses[J]. Journal of the Royal Statistical Society. Series B:Methodological, 1962, 24(2):406-424.
[22] JACQUELIN J. A reliable algorithm for the exact median rank function[J]. IEEE Transactions on Electrical Insulation, 1993, 28(2):168-171.
文章导航

/