Considering the discrete characteristics of Carbon/Carbon (C/C) composites, the compression strength distribution and reliability assessment of punctured C/C composites is studied. Firstly, the number of samples used for intensity distribution analysis is determined by residual analysis. Then the parameters of the two-parameter Weibull distribution, normal distribution, and lognormal distribution models are obtained by linear regression analysis. And then the distribution of compressive strength of punctured C/C composites is studied. Finally, the Kolmogorov-Smirnov test, the Anderson-Darling test, and the maximum likelihood method are used to test the goodness of the fit of the three distribution models. The results show that the minimum number of samples used to obtain the compressive strength distribution of punctured C/C composites should be no less than 30 and the Weibull distribution, normal distribution, and lognormal distribution models can all characterize the distribution of compressive strength of punctured C/C composites. The Weibull distribution has the highest goodness of fit. And based on the intensity distribution model, the reference values of designing punctured C/C composites with different reliabilities can be evaluated.
[1] 李辉,张立同,曾庆丰,等. 2D C/SiC复合材料的可靠性评价[J]. 复合材料学报, 2007, 24(4):95-100. LI H, ZHANG L T, ZENG Q F, et al. Reliability analysis of 2D C/SiC composite[J]. Acta Materiae Compositae Sinica, 2007, 24(4):95-100(in Chinese).
[2] 周亚东, 费庆国,吴邵庆,等. C/SiC材料疲劳试验加载频率的数值研究[J]. 振动工程学报, 2016, 29(6):985-991. ZHOU Y D, FEI Q G, WU S Q, et al. Numerical investigation of the loading frequency for fatigue test of C/SiC materials[J]. Journal of Vibration Engineering, 2016, 29(6):985-991(in Chinese).
[3] CHEN S F, FEI Q G, JIANG D, et al. Determination of thermo-elastic parameters for dynamical modeling of 2.5D C/SiC braided composites[J]. Journal of Mechanical Science and Technology, 2018, 32(1):231-243.
[4] CALARD V, LAMON J. A probabilistic-statistical approach to the ultimate failure of ceramic-matrix composites-Part I:Experimental investigation of 2D woven SiC/SiC composites[J]. Composites Science & Technology, 2002, 62(3):385-393.
[5] CALARD V, LAMON J. A probabilistic-statistical approach to the ultimate failure of ceramic-matrix composites-Part Ⅱ:Macroscopic model[J]. Composites Science & Technology, 2002, 62(3):395-399.
[6] LU C, DANZER R, FISCHER F D. Fracture statistics of brittle materials:Weibull or normal distribution[J]. Physical Review E, 2002, 65(6):067102.
[7] 郭飞, 费庆国,李彦斌,等. 基于Weibull模型的C/C销钉剪切强度分布及本构关系[J/OL]. 复合材料学报, (2018-04-13)[2018-12-10]. https://doi.org/10.13801/j.cnki.fhclxb.20180412.001. GUO F, FEI Q G, LI Y B, et al. Shear strength distribution and constitutive model of C/C composite pins based on Weibull model[J/OL]. Acta Materiae Compositae Sinica, (2018-04-13)[2018-12-10]. https://doi.org/10.13801/j.cnki.fhclxb.20180412.001(in Chinese).
[8] BASU B, TIWARI D, KUNDU D, et al. Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?[J]. Ceramics International, 2009, 35(1):237-246.
[9] 严科飞, 张程煜,乔生儒,等. C/C复合材料室温面内剪切强度分布[J]. 机械强度, 2012, 34(6):912-915. YAN K F, ZHANG C Y, QIAO S R, et al. Statistical distribution of in-plane shear strength of C/C composite at room temperature[J]. Journal of Mechanical Strength, 2012, 34(6):912-915(in Chinese).
[10] DEY A K, KUNDU D. Discriminating among the log-normal, weibull, and generalized exponential distributions[J]. IEEE Transactionson Reliability, 2009, 58(3):416-424.
[11] DANZER R. Some notes on the correlation between fracture and defect statistics:Are Weibull statistics valid for very small specimens?[J]. Journal of the European Ceramic Society, 2006, 26(15):3043-3049.
[12] PAI S S, GYEKENYESI J P. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume-and surface-flaw-induced fracture in ceramics:NASA-TM-100890[R]. Washington, D.C.:NASA,1988.
[13] XU Y, CHENG L, ZHANG L, et al. Optimization of sample number for Weibull function of brittle materials strength[J]. Ceramics International, 2001, 27(2):239-241.
[14] DANZER R, LUBE T, SUPANCIC P. Monte Carlo simulations of strength distributions of brittle materials:Type of distribution, specimen and sample size[J]. Zeitschrift fur Metallkunde, 2001, 92(7):773-783.
[15] NOHUT S. Influence of sample size on strength distribution of advanced ceramics[J]. Ceramics International, 2014, 40(3):4285-4295.
[16] 费庆国, 张令弥,李爱群,等. 基于不同残差的动态有限元模型修正的比较研究[J]. 振动与冲击, 2005, 24(4):24-26. FEI Q G, ZHANG L M, LI A Q, et al. Evaluation of FE model updating using four kinds of residues[J]. Journal of Vibration and Shock, 2005, 24(4):24-26(in Chinese).
[17] 孙岩, 刘勇琼,廖英强. 针刺C/C复合材料剪切性能[J]. 宇航材料工艺, 2012, 42(3):91-95. SUN Y, LIU Y Q, LIAO Y Q. Shear properties of needled felt carbon/carbon composites[J]. Aerospace Materials & Technology, 2012, 42(3):91-95(in Chinese).
[18] 潘晋波, 崔万继,王富强,等. 针刺C/C复合材料层间剪切强度的研究[C]//第17届全国复合材料学术会议, 2012:927-930. PAN J B, CUI W J, WANG F Q, et al. Investigation on interlaminar shear strength of needled Carbon/Carbon composites[C]//17th National Conference on Composite Materials, 2012:927-930(in Chinese).
[19] HATTA H, GOTO K, AOKI T. Strengths of C/C composites under tensile, shear, and compressive loading:Role of interfacial shear strength[J]. Composites Science & Technology, 2005, 65(15):2550-2562.
[20] 赵卫, 乔玲,韩晓林,等. C/C-SiC复合材料的表面烧蚀模型及数值模拟[J]. 东南大学学报(自然科学版), 2011, 41(2):365-369. ZHAO W, QIAO L, HAN X L, et al. Surface ablation model and numerical simulation of C/C-SiC composites[J]. Journal of Southeast University(Natural Science Edition), 2011,41(2):365-369(in Chinese).
[21] COX D R. Further results on tests of separate families of hypotheses[J]. Journal of the Royal Statistical Society. Series B:Methodological, 1962, 24(2):406-424.
[22] JACQUELIN J. A reliable algorithm for the exact median rank function[J]. IEEE Transactions on Electrical Insulation, 1993, 28(2):168-171.