材料工程与机械制造

基于新型电涡流阻尼器的大飞机垂尾装配界面精加工振动抑制

  • 樊伟 ,
  • 郑联语 ,
  • 赵雄 ,
  • 杨毅青 ,
  • 刘新玉 ,
  • 杨森
展开
  • 1. 北京航空航天大学 机械工程及自动化学院, 北京 100083;
    2. 上海飞机制造有限公司 航空制造技术研究所, 上海 201324

收稿日期: 2018-12-16

  修回日期: 2019-01-10

  网络出版日期: 2019-04-11

基金资助

国家自然科学基金(51775024);民用飞机专项科研技术研究项目(MJZ-2016-G-62);航空高端装备智能制造技术重点实验室项目;北京市数字化设计与制造重点实验室项目

Vibration attenuation for finishing assembly interfaces of vertical tail section of large aircraft based on novel eddy current damper

  • FAN Wei ,
  • ZHENG Lianyu ,
  • ZHAO Xiong ,
  • YANG Yiqing ,
  • LIU Xinyu ,
  • YANG Sen
Expand
  • 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
    2. Institute of Aeronautical Manufacturing Technology, Shanghai Aircraft Manufacturing Co., Ltd, Shanghai 201324, China

Received date: 2018-12-16

  Revised date: 2019-01-10

  Online published: 2019-04-11

Supported by

National Natural Science Foundation of China (51775024); Civil Airplane Technology Development Program (MJZ-2016-G-62); Key Laboratory of Smart Manufacturing for High-end Aerospace Products; Beijing Key Laboratory of Digital and Manufacturing

摘要

大飞机垂尾装配界面是由钛合金制成的大型结构件,由于结构刚度低,在精加工时易产生振动、回弹变形和让刀等现象,对其精加工质量造成严重影响。为此,基于电磁感应原理设计了一款新型电涡流阻尼器用于抑制装配界面精加工中的多模态振动。首先,介绍了阻尼器的结构,并建立了其阻尼特性的理论模型。然后,基于该模型分别研究了不同磁极厚度、导体厚度和磁极数等对阻尼器阻尼特性的影响,并确定了阻尼器关键零组件的材料及几何参数。基于此,建立了装配界面抑制系统的动力学模型,并通过数值分析和有限元仿真方法得到了装配界面振动速度与阻尼器阻尼特性的变化规律。最后,通过动力学测试和切削实验对阻尼器的抑振性能进行了验证。锤击测试结果表明该阻尼器能明显提高装配界面抑振系统的阻尼比和等效刚度,阻尼比最大能提高2.17倍,等效刚度最大能提高1.65倍,能大幅衰减装配界面在冲击激励下产生的自由振动。切削实验结果表明该阻尼器能显著提升装配界面精加工过程的稳定性,装配界面时域信号的振动幅值最大能降低64.4%。通过对比实验结果得知双阻尼器配置对装配界面的抑振效果更好,能明显提高其动态可加工性,工艺参数轴向切深能提高至2.0 mm,主轴转速可提升至500 r/min,这为保证和提高装配界面的精加工质量提供了一种简单可行的解决方案。

本文引用格式

樊伟 , 郑联语 , 赵雄 , 杨毅青 , 刘新玉 , 杨森 . 基于新型电涡流阻尼器的大飞机垂尾装配界面精加工振动抑制[J]. 航空学报, 2019 , 40(9) : 422859 -422859 . DOI: 10.7527/S1000-6893.2019.22859

Abstract

The assembly interface of the vertical tail section of large aircraft is a large thin-walled structure made of titanium alloy. Due to the low structural rigidity, it is prone to machining vibration, rebound deformation, and undercutting in the process of finishing, which seriously impacts the final finishing quality. To address these problems, a novel eddy current damper is designed based on the principle of electromagnetic induction to suppress the multi-mode vibration of the assembly interface. Firstly, the geometric structure of the damper is introduced. Then the damping performance model of the damper is established. Secondly, the effects of various thicknesses of magnetic pole, thicknesses of conductor, and numbers of magnetic poles on the damper's damping are respectively studied. And the reasonable material and the geometric parameters of key damper components are determined based on the damping performance model. Thirdly, the dynamic model of the suppression system of the assembly interface is established. Then the relationship between the vibration velocity and the damping performance of the damper is obtained through numerical analysis and finite element simulation methods. Finally, the working performance of the damper is validated via dynamic tests and cutting experiments. The dynamic tests results show the damper can improve the damping ratio and the structural stiffness of the assembly interface by 2.17 and 1.65 times respectively, greatly attenuate the free vibration of the assembly interface. The cutting experiment results illustrate the damper can increase the finishing stability of the assembly interface, such as, the vibration amplitude of the assembly interface can be reduced by 64.4% in the time domain, which shows a good vibration suppression effect. The comparison of the results shows that the configuration of double dampers possesses a better function of vibration suppression to improve the dynamic machinability of the assembly interface. That is, the axial cutting depth and the spindle speed can be respectively increased to 2.0 mm and 500 r/min, providing a suitable and feasible approach for ensuring the finishing quality of the assembly interface.

参考文献

[1] 林美安. 飞机机身装配工艺及仿真技术研究[D]. 南京:南京航空航天大学, 2010:12-13. LIN M A. Research on the assembly process and simulation of aircraft fuselage[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:12-13(in Chinese).
[2] LEI P, ZHENG L Y. An automated in-situ alignment approach for finish machining assembly interfaces of large-scale components[J]. Robotics and Computer-Integrated Manufacturing, 2017, 46:130-143.
[3] LEI P, ZHENG L Y, XIAO W L, et al. A closed-loop machining system for assembly interfaces of large-scale component based on extended STEP-NC[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(5):1-27.
[4] 任明章. 机械振动的分析与控制以及计算方法[M]. 北京:机械工业出版社, 2011:100-101. REN M Z. Analysis and control of mechanical vibration and its calculation method[M]. Beijing:China Machine Press, 2011:100-101(in Chinese).
[5] 杨毅青, 裴行政, 林境燊. 基于粘弹性材料的五轴铣削加工被动抑振技术[J]. 航空制造技术, 2017, 526(7):78-81. YANG Y Q, PEI X Z, LIN J S. Vibration attenuation of five-axis milling based on viscoelastic damping material[J]. Aeronautical Manufacturing Technology, 2017, 526(7):78-81(in Chinese).
[6] KOLLURU K, AXINTE D, BECHER A. A solution for minimizing vibrations in milling of thin walled casings by applying dampers to workpiece surface[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1):415-418.
[7] BEIJEN M A, VOORHOEVE R, HEERTJES M F, et al. Experimental estimation of transmissibility matrices for industrial multi-axis vibration isolation systems[J]. Mechanical Systems and Signal Processing, 2018(107):469-483.
[8] 杨智春, 杨飞, 张玲凌. 动力吸振器用于夹层壁板颤振抑制的研究[J]. 振动与冲击, 2009, 28(2):25-27. YANG Z C, YANG F, ZHANG L L. Flutter suppression for sandwich panel using dynamic absorber[J]. Journal of Vibration and Shock, 2009, 28(2):25-27(in Chinese).
[9] KOLLURU K V, AXINTE D A, RAFFES M H, et al. Vibration suppression and coupled interaction study in milling of thin wall casings in the presence of tuned mass dampers[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2014, 228(6):826-836.
[10] WANG M, ZAN T, YANG Y, et al. Design and implementation of nonlinear TMD for chatter suppression:An application in turning processes[J]. International Journal of Machine Tools & Manufacture, 2010, 50(5):474-479.
[11] YANG Y, XIE R, LIU Q. Design of a passive damper with tunable stiffness and its application in thin-walled part milling[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):2713-2720.
[12] BURTSCHER J, FLEISCHER J. Adaptive tuned mass damper with variable mass for chatter avoidance[J]. CIRP Annals-Manufacturing Technology, 2017, 66(1):397-400.
[13] EBRAHIMI B, KHAMESEE M B, GOLNARAGHI F. A novel eddy current damper:Theory and experiment[J]. Journal of Physics D:Applied Physics, 2009, 42(7):075001.
[14] 寇宝泉, 金银锡, 张赫,等. 电磁阻尼器的发展现状及应用前景[J]. 中国电机工程学报, 2015, 35(12):3132-3143. KOU B Q, JIN Y X, ZHANG H, et al. Development and application prospects of the electromagnetic damper[J]. Proceedings of the CSEE, 2015, 35(12):3132-3143(in Chinese).
[15] SODANO H A, BAE J S. Eddy current damping in structures[J]. Shock and Vibration Digest, 2004, 36(6):469-478.
[16] SODANO H A, BAE J S, INMAN D J, et al. Concept and model of eddy current damper for vibration suppression of a beam[J]. Journal of Sound and Vibration, 2005, 288(4):1177-1196.
[17] 刘淑莲, 郑水英. 改进式被动电磁阻尼器及其应用[J]. 振动与冲击, 2011, 30(9):94-97. LIU S L, ZHENG S Y. Improved passive electromagnetic damper and its application[J]. Journal of Vibration and Shock, 2011, 30(9):94-97(in Chinese).
[18] 汪志昊, 张闯, 周佳贞,等. 新型装配式竖向电涡流TMD试验研究[J]. 振动与冲击, 2017, 36(1):16-22. WANG Z H, ZHANG C, ZHOU J Z, et al. Tests for a prefabricated vertical TMD with eddy-current damping[J]. Journal of Vibration and Shock, 2017, 36(1):16-22(in Chinese).
[19] AO W K, REYNOLDS P. Analytical and experimental study of eddy current damper for vibration suppression in a footbridge structure[C]//IMAC XXXV Conference Paper, 2017:131-138.
[20] KIWBHOLZ D, SMITH C, HAILE W. Magnetically damped vibration isolation system for a space shuttle payload[J]. International Society for Optics and Photonics, 1996:272-280.
[21] 肖登红, 潘强, 何田. 一种新型电涡流阻尼器及阻尼性能研究[J]. 噪声与振动控制, 2014, 34(6):197-201. XIAO D H, PAN Q, HE T. Design and analysis of a novel eddy current damper[J]. Noise and Vibration Control, 2014, 34(6):197-201(in Chinese).
[22] HE T, XIAO D H, LIU X, et al. Design and analysis of a novel eddy current damper based on three-dimensional transient analysis[J]. Journal of Vibroengineering, 2013, 15(1):46-64.
[23] WANG Z, CHEN Z, WANG J. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 11(3):391-401.
[24] LU Z, HUANG B, ZHANG Q, et al. Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations[J]. Journal of Sound and Vibration, 2018, 421:153-165.
[25] BAE J S, HWANG J H, ROH J H, et al. Vibration suppression of a cantilever beam using magnetically tuned-mass-damper[J]. Journal of Sound and Vibration, 2012, 331(26):5669-5684.
[26] YANG Y, DAI W, LIU Q. Design and machining application of a two-DOF magnetic tuned mass damper[J]. International Journal of Advanced Manufacturing Technology, 2016:1-9.
[27] CHEN X, ZUO L, NAYFEH S. Design and analysis of a new type of electromagnetic damper with increased energy density[J]. Journal of Vibration and Acoustics, 2011, 133(4):041006.
[28] 李树侠, 朴松花. 钛合金材料的机械加工工艺综述[J]. 飞航导弹, 2007(7):57-61. LI S X, PIAO S H. A review of mechanical processing technology of titanium alloy materials[J].Aerodynamic Missiles Journal, 2007(7):57-61(in Chinese).
文章导航

/