提出了一种固液相变冲压发动机概念,即在常温下存放时燃料为固体状态,工作时通过微波驱动相变为液体,该发动机改善了液体冲压发动机的某些缺点。文中阐述了固液相变发动机原理,建立了固液相变燃料概念,提出了该类发动机评价体系指标,同时对该类发动机设计技术、相变驱动技术、相变燃料特性以及可能的应用领域进行了阐述和分析,对采用双下侧进气道的原理样机进行了地面模拟条件试验。以直链烷烃为主的相变燃料存放安全、成本低、不怕玻璃化,适合极低温环境存放和使用。
孙维国
,
史瑞华
,
林左鸣
,
刘代军
,
张文山
,
曹军伟
,
范中国
,
马聪慧
,
付泽川
,
刘爱华
,
田鹏
,
钱勤建
,
陈飞
,
段磊
,
崔金平
,
梁晓嘉
. 基于固液相变燃料的冲压发动机[J]. 航空学报, 2019
, 40(5)
: 122780
-122780
.
DOI: 10.7527/S1000-6893.2019.22780
A novel ramjet based on solid-liquid phase change fuels is proposed. The fuels are solid before operation or during storage conditions and are driven from solid to liquid at operation state through microwave radiation. It improves some of the disadvantages of liquid ramjet. The principle of solid-liquid phase change ramjet is described, the concept of solid-liquid phase change fuels is established, and the index of this kind of ramjet evaluation system is put forward. The design technology of this kind of ramjet, the drive technology of phase change, the characteristics of phase change fuels,and the possible fields of application are described and analyzed. A double lower inlet ramjet based on solid-liquid phase change fuels has been demonstrated at ground tests. The phase change fuels mainly based on straight chain alkane can be stored safely with lower cost, are not afraid of glass transition, and are more suitable to be stored and used in extremely low temperature environments.
[1] FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1):27-58.
[2] STECHMAN R C, ALLEN R C. History of ramjet propulsion development at the marquardt company-1944 to 1970:AIAA-2005-3538[R]. Reston, VA:AIAA, 2005.
[3] HEWITT P W. Status of ramjet programs in the United States:AIAA-2008-5265[R]. Reston, VA:AIAA, 2008.
[4] FALEMPIN F. Ramjet/scramjet technology-French capabilities:AIAA-1999-2377[R]. Reston, VA:AIAA, 1999.
[5] MINARD J P, HALLAIS M, FALEMPIN F. Low cost ramjet technology for tactical missile application:AIAA-2002-3765[R]. Reston, VA:AIAA, 2002.
[6] BESSER H L. History of ducted rocket development at Bayern-Chemie:AIAA-2008-5261[R]. Reston, VA:AIAA, 2008.
[7] BESSER H L, WEINREICH H L, KURTH G. Fit for mission-Design tailoring aspects of throttleable ducted rocket propulsion systems:AIAA-2008-5262[R]. Reston, VA:AIAA, 2008.
[8] 巩伦昆, 陈雄, 李唯暄, 等. 固体燃料冲压发动机自持燃烧的影响因素[J]. 航空学报, 2017, 38(7):120821. GONG L K, CHEN X, LI W X, et al. Influencing factors for self-sustained combustion of solid fuel ramjet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120821(in Chinese).
[9] 单睿子, 曹军伟, 莫展, 等. 基于试验设计的固体火箭冲压发动机燃烧效率规律研究[J]. 航空学报, 2015, 36(9):2859-2868. SHAN R Z, CAO J W, MO Z, et al. Research of solidducted rocket combustion efficiency based on design of experiment methodology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2859-2868(in Chinese).
[10] FAKHRI S, LEE J G, YETTER R A. Atomization and spray characteristics of gelled-propellant simulants formed by two impinging jets:AIAA-2009-5241[R]. Reston, VA:AIAA, 2009.
[11] 张文刚, 王春华, 庞爱民. 膏体富燃料推进剂配方研究[J]. 固体火箭技术, 2008, 31(2):154-156. ZHANG W G, WANG C H, PANG A M. Research on pasty fuel-rich propellant formulation[J]. Journal of Solid Rocket Technology, 2008, 31(2):154-156(in Chinese).
[12] 刘爱华, 崔金平, 孙振华, 等. 膏体推进剂冲压发动机一次燃烧试验[J]. 推进技术, 2012, 33(2):227-231. LIU A H, CUI J P, SUN Z H, et al. Experiment on primary combustion of pasty propellant ramjet[J]. Journal of Propulsion Technology, 2012, 33(2):227-231(in Chinese).