层流分离现象是翼型低雷诺数条件下出现的典型流场特征。层流分离流动中包含流动分离、转捩、再附等非定常流动结构,层流分离流动的形成与演化会对翼型气动特性产生恶化作用。采用大涡模拟(LES)方法对低雷诺数范围内不同雷诺数下的翼型层流分离流动开展精细数值模拟,研究了雷诺数对翼型气动特性的影响规律及作用机理。LES方法采用隐式亚格子模型,基于结构化拼接网格,对流项离散和时间推进方法分别采用AUSM+格式以及双时间步方法。验证算例计算结果表明数值模拟方法的正确性及可靠性,雷诺数对翼型气动特性具有显著影响。随雷诺数降低,时均分离泡外形增大、位置后移,平均阻力系数增大,特别是在较低雷诺数下,翼型升阻力系数随时间出现振荡现象。进一步研究表明,造成不同时均分离泡形态和气动特性的原因在于翼型上表面分离剪切层的失稳与转捩特征。随雷诺数降低,流动黏性增大,导致分离剪切层速度梯度减小,流动发生转捩及再附位置后移,直至翼型表面不再发生转捩和再附。
Laminar separation phenomenon is the characteristic feature of airfoils at low Reynolds number conditions. The laminar separation flow contains the complex flow structures of laminar separation, transition and reattachment. The formation and evolution of laminar separation flow are detrimental to the performance of airfoils. The Large Eddy Simulation (LES) method is utilized to predict the laminar separation flow over airfoils at different Reynolds numbers in the low range of Reynolds numbers. The effects of Reynolds number on aerodynamic characteristics of airfoils and the corresponding mechanism are studied. On the structurally patched mesh, the LES method adopt the implicit sub-grid-scale model, and utilize the AUSM+ scheme for spatial discretization and dual-time-step method for time marching. The correctness and reliability of the numerical method are proved by the validation example. The results indicate that the Reynolds number has a significant effect on the aerodynamic characteristics of airfoil. With the decrease of Reynolds numbers, the shape of the bubble increases, and the position moves towards the trailing edge, which leads to the increment of average drag coefficient. Besides, at the lower Reynolds numbers, the lift drag coefficient oscillates with time significantly. Further studies show that the instability and transition characteristics of the separated shear layer over the airfoil surface are responsible for the different time-average bubble configurations and aerodynamic characteristics. With the decrease of Reynolds numbers, the flow viscosity increases. So the velocity gradient of the shear layer decreases, and the positions of transition and reattachment move towards the trailing edge. At the lower Reynolds numbers, transition and reattachment do not occur over the airfoil.
[1] 李锋, 白鹏, 石文, 等. 微型飞行器低雷诺数空气动力学[J]. 力学进展, 2007, 37(2):257-268. LI F, BAI P, SHI W, et al. Micro air vehicle aerodynamics at low Reynolds number[J]. Advances in Mechanics, 2007, 37(2):257-268(in Chinese).
[2] 白鹏, 崔尔杰, 李锋, 等. 对称翼型低雷诺数小迎角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1):1-8. BAI P, CUI E J, LI F, et al. Study of the non-linearl ift coefficient of the symmetric airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):1-8(in Chinese).
[3] MUNDAY P M, TAIRA K, SUWA T, et al. Nonlinear lift on a triangular airfoil in low-Reynolds number compressible flow[J]. Journal of Aircraft, 2015, 52(3):924-931.
[4] MUELLER T J. The influence of laminar separation and transition on low Reynolds number airfoil hysteresis[J]. Journal of Aircraft, 2985, 22(9):763-770.
[5] YANG Z, IGARASHI H, MARTIN M, et al. An experimental investigation on aerodynamic hysteresis of a low Reynolds number airfoil:AIAA-2008-0315[R]. Reston, VA:AIAA, 2008.
[6] GASTER M. The structure and behavior of laminar separation bubbles:AGARD CP-4[R]. Paris:AGARD, 1966:813-854.
[7] HORTON H P. Laminar separation bubbles in two-and three-dimensional incompressible flow[D]. London:University of London, 1968:25-62.
[8] SELIG S M, GUGLIELMO J J, BROEREN A P, et al. Experiments on airfoils at low Reynolds numbers:AIAA-1996-0062[R]. Reston, VA:AIAA, 1996.
[9] BREHM C, MACH S, GROSS A, et al. Investigations of an airfoil at low Reynolds number conditions[C]//4th AIAA Flow Control Conference. Reston, VA:AIAA, 2008:3765.
[10] GROSS A, FASEL H F. Numerical investigation of separation for airfoils at low Reynolds numbers[C]//40th AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2010:4736.
[11] 白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学:物理学力学天文学, 2015, 45(2):024703. BAI P, LI F, ZHAN H L, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low icidence[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(2):024703(in Chinese).
[12] 刘强, 刘强, 白鹏, 等. 不同雷诺数下翼型气动特性及层流分离现象演化[J]. 航空学报, 2017, 38(4):120338. LIU Q, LIU Q, BAI P, et al. Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120338(in Chinese).
[13] SHAN H, JIANG L, LIU C. Direct numerical simulation of flow separation around a NACA 0012 airfoil[J]. Computers and Fluids, 2005, 34(9):1096-1114.
[14] GALBRAITH C M, VISBAL R M. Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil:AIAA-2008-0225[R]. Reston, VA:AIAA, 2008.
[15] KOJIMA R, NONOMURA T, OYAMA A, et al. Large-eddy simulation of low-reynolds-number flow over thick and thin NACA airfoils[J]. Journal of Aircraft, 2013, 50(1):187-196.
[16] XU C, CHEN L, LU X. Large-eddy simulation of the compressible flow past a wavy cylinder[J]. Journal of Fluid Mechanics, 2010, 665:238-273.
[17] BORIS J P, GRINSTEIN F F, ORAN E S, et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10(4):199-228.
[18] GAMIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M]. Berlin:Springer, 2009:93.
[19] LIU M S. Progress towards an improved CFD method:AUSM+:AIAA-1995-1701[R]. Reston, VA:AIAA, 1995.
[20] LIU X, OSHER S, CHAN T. Weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 1994, 115(1):200-212.
[21] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[22] ANTONY J. Time dependent calculations using multigrid with application to unsteady flows past airfoils and wings[C]//AIAA 10th Computational Fluid Dynamics Conference. Reston, VA:AIAA, 1991:1596.
[23] OL V M, MCAULIFFE R B, HANFF S E, et al. Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2005:5149.