流体力学与飞行力学

斜激波总压损失率极小值理论解与物理意义

  • 史爱明 ,
  • Earl H DOWELL
展开
  • 1. 西北工业大学 航空学院 NPU-Duke空气动力与气动弹性联合实验室, 西安 710072;
    2. 杜克大学 普拉特工学院NPU-Duke空气动力与气动弹性联合实验室, 达勒姆 27708-0300

收稿日期: 2018-07-06

  修回日期: 2018-07-26

  网络出版日期: 2018-10-19

基金资助

国家自然科学基金(10602046);航空科学基金(20071453015);中国博士后科学基金(20060401013);CFD前沿技术(2015-F-016)

Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock

  • SHI Aiming ,
  • Earl H DOWELL
Expand
  • 1. NPU-Duke Topic Group for Aerodynamics and Aeroelasticity, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. NPU-Duke Topic Group for Aerodynamics and Aeroelasticity, Pratt School of Engineering, Duke University, Durham 27708-0300, United States

Received date: 2018-07-06

  Revised date: 2018-07-26

  Online published: 2018-10-19

Supported by

National Natural Science Foundation of China (10602046); Aeronautical Science Foundation of China (20071453015); China Postdoctoral Science Foundation (20060401013); Advanced Technology for CFD(2015-F-016)

摘要

以法向马赫数作为激波强度表征量,对斜激波关系式进行重新推导,得到了穿过激波总压损失率极小值的理论解。控制方程表达式为激波角对物面角的线性函数。依据斜激波总压损失率极小值解析公式,首先,绘制了针对超声速流总压损失率应用的楔形角-激波角-马赫数的斜激波效率图。其次,通过生成斜激波三维总压损失率等值线图,呈现了总压损失率在楔形角-激波角-特征马赫数空间上的分布规律。此外,利用斜激波效率图,揭示了等总压损失率条件下马赫数与激波角的对称双解现象。

本文引用格式

史爱明 , Earl H DOWELL . 斜激波总压损失率极小值理论解与物理意义[J]. 航空学报, 2018 , 39(12) : 122517 -122517 . DOI: 10.7527/S1000-6893.2018.22517

Abstract

Theoretical solutions for the minimum ratio of total pressure loss are derived based on the oblique shock relation and a definition of the strength by using normal Mach number for an oblique shock. First, the governing equation for the minimum ratio of total pressure loss is formulated as a linear function of the shock angle and the corresponding deflection angle. Second, based on the analytical formulae, a new oblique shock efficiency diagram regarding the deflection angle, the shock angle and the upstream Mach number is generated. For applications of the total pressure loss, the line for minimum ratio of total pressure loss is mapped on the diagram. Then a three-dimensional contour graph is proposed to study the distribution on ratio of total pressure loss in terms of the deflection angle, the shock angle and the characteristic Mach number. Third, according to the oblique shock efficiency diagram, solutions for the upstream Mach number and the corresponding shock angle are obtained. For the same ratio of total pressure loss, these solutions have symmetrical double values properties in their domain.

参考文献

[1] ANDERSON J D. Fundamentals of aerodynamics[M]. 6th ed. New York:McGraw-Hill Education, 2017:624-630.
[2] LIEPMANN H W, ROSSHKO A. Elements of gasdynamics[M]. New York:John Wiley & Sons, 1957:440-441.
[3] Ames Aeronautical Laboratory. Equations, tables and charts for compressible flow:NACA Report 1135[R]. Washington, D. C.:NACA, 1953.
[4] BUSHNELL D M. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36:81-96.
[5] LOVELL D A. European research to reduce drag for supersonic transport aircraft:AIAA-1999-3100[R]. Reston, VA:AIAA, 1999.
[6] ALONSO J J, COLONNO M R. Multidisciplinary optimization with applications to sonic-boom Minimization[J]. Annual Review of Fluid Mechanics, 2012, 44:505-526.
[7] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1):121458. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121458(in Chinese).
[8] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7):122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):122039(in Chinese).
[9] TAUB A H. John von Neumann collected works (Volume VI):Theory of games, astrophysics, hydrodynamics and meteorology[M]. London:Pergamon Press, 1963:178-202.
[10] CHEN Z J, LIN J, BAI C Y, et al. A self-similar solution of a curved shock wave and its time-dependent force variation for a starting flat plate airfoil in supersonic flow[J]. Chinese Journal of Aeronautics, 2018, 31(2):205-213.
[11] 杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(13):541-587. YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(13):541-587(in Chinese).
[12] SHEN H, WEN C Y. Theoretical investigation of shock stand-off distance for non-equilibrium flows over spheres[J]. Chinese Journal of Aeronautics, 2018, 31(5):990-996.
[13] 乐嘉陵, 曹文样, 叶希超, 等. 双马赫反射的数值模拟与光学干涉定量测量的比较(Ms=4. 62)[J]. 气动实验与测量控制, 1993, 7(1):22-31. LE J L, CAO W X, YE X C, et al. Result comparisons on double Mach reflection flow between numerical calculation and quantitative measurement using optical interferemetries[J]. Aerodynamic Experiment and Measurement & Control, 1993, 7(1):22-31(in Chinese).
[14] 易仕和, 陈植, 朱杨柱, 等. (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015, 36(1):98-119. YI S H, CHEN Z, ZHU Y Z, et al. Progress on experimental technique and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):98-119(in Chinese).
[15] 姜宗林, 罗长童, 胡宗民, 等. 高超声速风洞实验数据的多维空间相关理论与关联方法[J]. 中国科学:物理学力学天文学, 2015, 42(12):1-12. JIANG Z L, LUO C T, HU Z M, et al. Multi-dimensional interrelation theory for hypersonic wind-tunnel experimental data and its correlation algorithm[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 42(12):1-12(in Chinese).
[16] WANG C P, XUE L S, TIAN X. Experimental characteristics of oblique shock train upstream propagation[J]. Chinese Journal of Aeronautics, 2017, 30(2):663-676.
[17] 俞鸿儒. 空心活塞运动产生的激波[J]. 气体物理, 2016, 1(1):1-4 YU H R. Shock wave generated by hollow piston movement[J]. Physics of Gases, 2016, 1(1):1-4(in Chinese).
[18] WU Z N, XU Y Z, WANG W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3):503-513.
[19] 周恒, 袁湘江. 关于NND格式的两点注记[J]. 空气动力学学报, 2000, 18(1):52-54. ZHOU H, YUAN X J. Notes on the NND scheme[J]. Acta Aerodynamica Sinica, 2000, 18(1):52-54(in Chinese).
[20] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese).
[21] 张涵信. 无波动、无自由参数、耗散的隐式差分格式[J]. 应用数学和力学, 1991, 12(1):97-100. ZHANG H X. Implicit non-oscillatory containing no free parameters and dissipative (INND) scheme[J]. Applied Mathematics and Mechanics, 1991, 12(1):97-100(in Chinese).
[22] 邓小刚. 高阶精度耗散加权紧致非线性格式[J]. 中国科学(A辑), 2001, 31(12):1104-1117. DENG X G. High order precision dissipated weighted compact nonlinear scheme[J]. Science in China (Series A), 2001, 31(12):1104-1117(in Chinese).
[23] 邓小刚, 刘昕, 毛枚良, 等. 高精度加权紧致非线性格式的研究进展[J]. 力学进展, 2007, 37(3):417-427. DENG X G, LIU X, MAO M L, et al. Advance in high order accurate weighted compact nonlinear schemes[J]. Advances in Mechanics, 2007, 37(3):417-427(in Chinese).
[24] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6):716-739. WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6):716-739(in Chinese).
[25] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆内收缩进气道非设计点工作特性[J]. 航空学报, 2016, 37(11):3263-3272. LI Y Z, ZHANG K Y, SUN D. Off-design performance characteristics of inward turning inlet with rectangular-to-circular shape transition with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3263-3272(in Chinese).
[26] 乐嘉陵, 胡欲立, 刘陵. 双模态超燃冲压发动机研究进展[J]. 流体力学实验与测量, 2000, 14(1):1-12. LE J L, HU Y L, LIU L. Investigation of possibilities in developing dual-mode scramjets[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(1):1-12(in Chinese).
[27] HUANG W, WANG Z G, POURKASHANIAN M, et al. Numerical investigation on the shock wave transition in a three-dimensional scramjet isolator[J]. Acta Astronautica, 2011, 68:1669-1675.
[28] 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑:技术科学), 2009, 39(11):1828-1835. WANG F M, DING H H, LEI M F. Aerodynamic characteristics research on wide-speed range waverider configuration[J]. Science in China (Series E:Technological Sciences), 2009, 39(11):1828-1835(in Chinese).
[29] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[30] 刘建军, 胡红桥, 韩德胜, 等. 地基观测的夜侧极光对行星际激波的响应[J]. 地球物理学报, 2013, 56(6):1785-1796. LIU J J, HU H Q, HAN D S, et al. Response of nightside aurora to interplanetary shock from ground optical observation[J]. Chinese Journal of Geophysics, 2013, 56(6):1785-1796(in Chinese).
[31] 陈恕行. 弱斜激波的稳定性[J]. 中国科学(A辑), 2002, 32(5):451-457. CHEN S X. Stability of weak oblique shock waves[J]. Science in China (Series A), 2002, 32(5):451-457(in Chinese).
[32] 张涵信. 关于CFD高精度保真的数值模拟研究[J]. 空气动力学学报, 2016, 34(1):1-4. ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2016, 34(1):1-4(in Chinese).
[33] SHAPIRO A H. The dynamics and thermodynamics of compressible fluid flow (Volume 1)[M]. New York:The Ronald Press Company, 1953:532-539.
文章导航

/