流体力学与飞行力学

适用于涡激振荡问题研究的并行高精度方法

  • 邱滋华 ,
  • 徐敏 ,
  • 张斌 ,
  • 梁春雷
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 乔治华盛顿大学 机械与航空工程系, 华盛顿特区 20052

收稿日期: 2018-06-26

  修回日期: 2018-08-28

  网络出版日期: 2018-10-19

基金资助

国家自然科学基金(11602296,11802179)

A parallel high-order method for simulating vortex-induced vibrations

  • QIU Zihua ,
  • XU Min ,
  • ZHANG Bin ,
  • LIANG Chunlei
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, D.C. 20052, United States

Received date: 2018-06-26

  Revised date: 2018-08-28

  Online published: 2018-10-19

Supported by

National Natural Science Foundation of China (11602296, 11802179)

摘要

提出了一种用于研究大振幅及物体间小间距等极端情况下涡激振荡(VIV)问题的高精度方法。该方法针对三角形/四边形非结构混合网格,采用高精度谱差分(SD)格式对Navier-Stokes方程进行空间离散。通过引入非均匀滑移网格方法,将计算域分割成多个互相不重合的子区域,从而实现了子区域网格的独立变形,子区域之间通过粘接元进行信息传递。采用全耦合方法精确求解VIV问题中流体和固体间的相互作用。通过研究并行策略以及使用消息传递接口,实现了求解器的并行计算能力。数值模拟表明:对于无黏和有黏流动问题,该方法均能保持SD方法的高精度特性;对于动网格下的定常均匀来流,求解器能够做到自由流保持;单个圆柱VIV问题仿真与现有文献结果符合较好,验证了方法的可靠性;对于流场变形情况比较复杂的涡激振荡问题,求解器可以有效实现网格变形,并具有理想的并行效率。

本文引用格式

邱滋华 , 徐敏 , 张斌 , 梁春雷 . 适用于涡激振荡问题研究的并行高精度方法[J]. 航空学报, 2019 , 40(3) : 122483 -122483 . DOI: 10.7527/S1000-6893.2018.22483

Abstract

This paper presents a parallel high-order method for simulating Vortex-Induced Vibrations (VIV) at very challenging situations, such as vibrations of very closely placed solid objects or a row of multiple objects with large relative displacements. This method works on unstructured triangular/quadrilateral hybrid grids by employing the high-order Spectral Difference (SD) method for spatial discretization. By introducing nonuniform sliding meshes, a computational domain is split into several non-overlapping subdomains, and each subdomain can enclose an object and move freely with respect to its neighbors. The two sides of a sliding interface are coupled through a newly developed nonuniform mortar method. A monolithic approach is adopted to seamlessly couple the fluid and the solid vibration equations. Parallelization strategy is studied and achieved by message passing interface implementation. Through a series of numerical tests, we demonstrate that the present method is high-order accurate for both inviscid and viscous flows; for steady uniform flow, the solver can assure free stream preservation; single cylinder VIV simulation agrees well with previous simulations, which verifies the reliability of the method; mesh deformation can be easily applied even when the deformation of the flow field is complicated, and high parallel efficiency can be achieved at the same time.

参考文献

[1] BLEVINS R D, SAUNDERS H. Flow-induced vibration[M]. New York:Van Nostrand Reinhold Co., 1990:1-3.
[2] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36:413-455.
[3] WILLIAMSON C H K, GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6):713-735.
[4] 贾志刚, 吕志咏, 邓小刚. 均匀来流中旋转振荡圆柱绕流的数值研究[J]. 航空学报, 1999, 20(5):389-392. JIA Z G, LV Z Y, DENG X G. Numerical study of flowfield past a rotating oscillation circular cylinder in uniform flow[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(5):389-392(in Chinese).
[5] 唐虎, 常士楠, 成竹, 等. 亚临界圆柱绕流的DES方法比较[J]. 航空学报, 2017, 38(3):87-97. TANG H, CHANG S N, CHENG Z, et al. Comparison of detached eddy simulation schemes on a subcritical flow around circular cylinder[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):87-97(in Chinese).
[6] FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Vancouver:University of British Columbia, 1968:30-45.
[7] KHALAK A, WILLIAMSON C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5):455-472.
[8] KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7-8):813-851.
[9] MITTAL S, KUMAR V. Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder at low Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 1999, 31(7):1087-1120.
[10] JEON D, GHARIB M. On circular cylinders undergoing two-degree-of-freedom forced motions[J]. Journal of Fluids and Structures, 2001, 15(3-4):533-541.
[11] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509:23-62.
[12] PRASANTH T K, BEHARA S, SINGH S P, et al. Effect of blockage on vortex-induced vibrations at low Reynolds numbers[J]. Journal of Fluids and Structures, 2006, 22(6-7):865-876.
[13] YAO W, JAIMAN R K. Model reduction and mechanism for the vortex-induced vibrations of bluff bodies[J]. Journal of Fluid Mechanics, 2017, 827:357-393.
[14] YAO W, JAIMAN R K. Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm[J]. Journal of Fluid Mechanics, 2017, 827:394-414.
[15] GOTTLIEB D, ORSZAG S A. Numerical analysis of spectral methods:Theory and applications[C]//CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industry and Applied Mathematics. Philadelphia, PA:SIAM, 1977:969-970.
[16] WANG J P. Key to problems in spectral methods[M]//HAFEZ M, OSHIMA K. Computational fluid dynamics review. Singapore:World Scientific, 1998:369-378.
[17] 王健平. 谱方法的基本问题与有限谱法[J]. 空气动力学学报, 2001, 19(2):161-171. WANG J P. Fundamental problems in spectral methods and finite spectral method[J]. Acta Aerodynamica Sinica, 2001, 19(2):161-171(in Chinese).
[18] KOPRIVA D A. A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1998, 143(1):125-158.
[19] LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I:Basic formulation[J]. Journal of Computational Physics, 2006, 216(2):780-801.
[20] WANG Z J, LIU Y, MAY G, et al. Spectral difference method for unstructured grids Ⅱ:Extension to the Euler equations[J]. Journal of Scientific Computing, 2007, 32:45-71.
[21] LIANG C, JAMESON A, WANG Z J. Spectral difference method for compressible flow on unstructured grids with mixed elements[J]. Journal of Computational Physics, 2009, 228(8):2847-2858.
[22] JAMESON A. A proof of the stability of the spectral difference method for all orders of accuracy[J]. Journal of Scientific Computing, 2010, 45:348-358.
[23] MAY G, SCHÖBERL J. Analysis of a spectral difference scheme with flux interpolation on Raviart-Thomas elements:AICES-2010/04-8[R]. Aachen, NRW:RWTH Aachen University, 2010.
[24] BALAN A, MAY G, SCHÖBERL J. A stable high-order spectral difference method for hyperbolic conservation laws on triangular elements[J]. Journal of Computational Physics, 2012, 231(5):2359-2375.
[25] ZHANG B, LIANG C. A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains[J]. Journal of Computational Physics, 2015, 295:147-160.
[26] ZHANG B, LIANG C, YANG J, et al. A 2D parallel high-order sliding and deforming spectral difference method[J]. Computers & Fluids, 2016, 139:184-196.
[27] LI M, QIU Z, LIANG C, et al. A new high-order spectral difference method for simulating compressible flows on unstructured grids with mixed elements:AIAA-2017-0520[R]. Reston, VA:AIAA, 2017.
[28] RUSANOV V V. Calculation of interaction of non-steady shock waves with obstacles[J]. Journal of Computational Math Physics USSR, 1961, 1:261-279.
[29] PERSSON P O, BONET J, PERAIRE J. Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198:1585-1595.
[30] THOMAS P D, LOMBARD C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10):1030-1037.
[31] KOPRIVA D A. Metric identities and the discontinuous spectral element method on curvilinear meshes[J]. Journal of Scientific Computing, 2006, 26(3):301-327.
[32] 刘君, 白晓征, 张涵信, 等. 关于变形网格"几何守恒律"概念的讨论[J]. 航空计算技术, 2009, 39(4):1-5. LIU J, BAI X Z, ZHANG H X, et al. Discussion about GCL for deforming grids[J]. Aeronautical Computing Technique, 2009, 39(4):1-5(in Chinese).
[33] MINOLI C A, KOPRIVA D A. Discontinuous Galerkin spectral element approximations on moving meshes[J]. Journal of Computational Physics, 2011, 230(5):1876-1902.
[34] MA R, CHANG X, ZHANG L, et al. On the geometric conservation law for unsteady flow simulations on moving mesh[J]. Procedia Engineering, 2015, 126:639-644.
[35] XU D, DENG X, CHEN Y, et al. On the freestream preservation of finite volume method in curvilinear coordinates[J]. Computers & Fluids, 2016, 129:20-32.
[36] KARYPIS G, KUMAR V. A Fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1999, 20:359-392.
[37] MAVRIPLIS C A. Nonconforming discretizations and a posteriori error estinates for adaptive spectral element techniques[D]. Boston, MA:Massachusetts Institute of Technology, 1989:92-111.
[38] RUUTH S. Global optimization of explicit strong-stability-preserving Runge-Kutta methods[J]. Mathematics of Computation, 2006, 75(253):183-207.
[39] ERLEBACHER G, HUSSAINI M Y, SHU C W. Interaction of a shock with a longitudinal vortex[J]. Journal of Fluid Mechanics, 1997, 337:129-153.
文章导航

/