电子电气工程与控制

基于模型预测静态规划的自适应轨迹跟踪算法

  • 王萌萌 ,
  • 张曙光
展开
  • 北京航空航天大学 交通科学与工程学院, 北京 100083

收稿日期: 2018-03-01

  修回日期: 2018-04-13

  网络出版日期: 2018-06-29

Adaptive trajectory tracking algorithm based on tracking model-predictive-static-programming

  • WANG Mengmeng ,
  • ZHANG Shuguang
Expand
  • School of Transportation Science and Technology, Beihang University, Beijing 100083, China

Received date: 2018-03-01

  Revised date: 2018-04-13

  Online published: 2018-06-29

摘要

轨迹跟踪是飞机自主运动控制的关键问题之一。跟踪模型预测静态规划(T-MPSP)是一种新近发展的基于非线性模型的轨迹跟踪算法,但对于飞行器受损等情况下,模型参数相较于标称模型具有较大的偏差时,则可能导致轨迹跟踪效果不理想。提出了基于参数估计的自适应轨迹跟踪算法,在模型预测静态规划(MPSP)的框架下得出解析解,实现了对参数的实时估计,据此更新跟踪模型预测静态规划算法中所使用的模型后,可以有效扩大对参数偏离的适应性,并保留模型预测静态规划计算效率高的特点。通过仿真对比得出,相较于已有的跟踪模型预测静态规划,改进后的算法对模型参数偏离的容忍性明显提高,且算法迭代效率高,适于在线应用。

本文引用格式

王萌萌 , 张曙光 . 基于模型预测静态规划的自适应轨迹跟踪算法[J]. 航空学报, 2018 , 39(9) : 322105 -322113 . DOI: 10.7527/S1000-6893.2018.22105

Abstract

Trajectory tracking is one of the key methods for autonomous aircraft motion control. Tracking Model Predictive Static Programming (T-MPSP) is an efficient non-linear model-based trajectory tracking algorithm. However, the algorithm may also result in unsatisfactory tracking performance in the cases when the aircraft is impaired, and when the utilized aircraft model deviates significantly from the nominal model. An adaptive trajectory tracking algorithm is proposed based on real-time parameter estimation. The algorithm realizes the real-time parameter estimation under the framework of Model Predictive Static Programming (MPSP), providing computationally efficient closed-form solution; and updates the model used in the T-MPSP in real-time, thus effectively ensuring a better guidance accuracy. The proposed algorithm is an extension of the MPSP algorithm, and therefore has a high overall computational efficiency, so it is amenable for online applications. Numerical simulation validates the effectiveness of the proposed algorithm.

参考文献

[1] SHAMMA J S, CLOUTIER J R. Gain-scheduled missile autopilot design using linear parameter varying transformations[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(2):256-263.
[2] SHAMMA J S, ATHANS M. Analysis of gain scheduled control for nonlinear plants[J]. IEEE Transactions on Automatic Control, 1990, 35(8):898-907.
[3] KAMINER I, PASCOAL A, HALLBERG E, et al. Trajectory tracking for autonomous vehicles:An integrated approach to guidance and control[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1):29-38.
[4] BHARADWAJ S, RAO A V, MEASE K D. Entry trajectory tracking law via feedback linearization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(5):726-732.
[5] ORIOLO G, DE LUCA A, VENDITTELLI M. WMR control via dynamic feedback linearization:Design, implementation, and experimental validation[J]. IEEE Transactions on Control Systems Technology, 2002, 10(6):835-852.
[6] AL-HIDDABI S A, MCCLAMROCH N H. Tracking and maneuver regulation control for nonlinear nonminimum phase systems:Application to flight control[J]. IEEE Transactions on Control Systems Technology, 2002, 10(6):780-792.
[7] AGUIAR A P, HESPANHA J P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE Transactions on Automatic Control, 2007, 52(8):1362-1379.
[8] 杨立本, 章卫国, 黄得刚. 基于ADRC姿态解耦的四旋翼飞行器鲁棒轨迹跟踪[J]. 北京航空航天大学学报, 2015, 41(6):1026-1033. YANG L B, ZHANG W G, HUANG D G. Robust trajectory tracking for quadrotor aircraft based on ADRC attitude decoupling control[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(6):1026-1033(in Chinese).
[9] 吴超, 王浩文, 张玉文, 等. 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015, 36(2):473-483. WU C, WANG H W, ZHANG Y W, et al. LADRC-based trajectory tracking for unmanned helicopter[J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(2):473-483(in Chinese).
[10] KANG Y, HEDRICK J K. Design of nonlinear model predictive controller for a small fixed-wing unmanned aerial vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2006:1-11.
[11] KANG Y, HEDRICK J K. Linear tracking for a fixed-wing UAV using nonlinear model predictive control[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5):1202-1210.
[12] PADHI R. Model predictive static programming:A promising technique for optimal missile guidance[J]. Annals of the Indian National Academy of Engineering, 2008, 5:185-194.
[13] MAITY A, PADHI R, MALLARAM S, et al. A robust and high precision optimal explicit guidance scheme for solid motor propelled launch vehicles with thrust and drag uncertainty[J]. International Journal of Systems Science, 2016, 47(13):3078-3097.
[14] OZA H B, PADHI R. Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J]. Journal of Guidance, Control and Dynamics, 2012, 35(1):153-164.
[15] MAITY A, OZA H B, PADHI R. Generalized model predictive static programming and angle-constrained guidance of air-to-ground missiles[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1897-1913.
[16] KUMAR P, PADHI R. Extension of model predictive static programming for reference command tracking[J]. IFAC Proceedings Volumes, 2014, 47(1):855-861.
[17] TRIPATHI A K, PADHI R. Autonomous landing for UAVs using T-MPSP guidance and dynamic inversion autopilot[J]. IFAC-PapersOnLine, 2016, 49(1):18-23.
[18] CAMACHO E F, ALBA C B. Model predictive control[M]. Berlin:Springer Science & Business Media, 2013.
[19] NGUYEN N, KRISHNAKUMAR K, KANESHIGE J, et al. Flight dynamics and hybrid adaptive control of damaged aircraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):751.
[20] ALLIGIER R, GIANAZZA D, DURAND N. Learning the aircraft mass and thrust to improve the ground-based trajectory prediction of climbing flights[J]. Transportation Research Part C:Emerging Technologies, 2013, 36:45-60.
[21] IMADO F, KURODA T, TAHK M-J. A new missile guidance algorithm against a maneuvering target[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 1998:10-12.
文章导航

/