[1] 皮骏, 黄江博. 基于IPSO-Elman神经网络的航空发动机故障诊断[J]. 航空动力学报, 2017, 32(12):3031-3038. PI J, HUANG J B. Aero-engine fault diagnosis based on IPSO-Elman neural network[J]. Journal of Aerospace Power, 2017, 32(12):3031-3038(in Chinese).
[2] 孙灿飞, 王友仁. 直升机行星传动轮系故障诊断研究进展[J]. 航空学报, 2017, 38(7):111-124. SUN C F, WANG Y R. Advance in study of fault diagnosis of helicopter planetary gears[J]. Acta Aeronautica et Astronautica Sinca, 2017, 38(7):111-124(in Chinese).
[3] HE J J, QI R Y, JIANG B, et al. Fault-tolerant control with mixed aerodynamic surfaces and RCS jets for hypersonic reentry vehicles[J]. Chinese Journal of Aeronautics,2017, 30(2):780-795.
[4] DESAVALE R G, KANAI R A, CHAVAN S P, et al. Vibration characteristics diagnosis of roller bearing using the new empirical model[J]. Journal of Tribology, 2016, 138(1):4031065.
[5] 廖明夫, 马振国, 刘永泉, 等. 航空发动机中介轴承的故障特征与诊断方法[J]. 航空动力学报, 2013, 28(12):2752-2758. LIAO M F, MA Z G, LIU Y Q, et al. Fault characteristics and diagnosis method of intershaft bearing in aero-engine[J]. Journal of Aerospace Power, 2013, 28(12):2752-2758(in Chinese).
[6] 赵志宏, 杨绍普. 一种基于样本熵的轴承故障诊断方法[J]. 振动与冲击, 2012, 31(6):136-140. ZHAO Z H, YANG S P. Sample entropy-base roller bearing fault diagnosis method[J]. Journal of Vibration and Shock, 2012, 31(6):136-140(in Chinese).
[7] 向丹, 岑健. 基于EMD熵特征融合的滚动轴承故障诊断方法[J]. 航空动力学报, 2015, 30(5):1149-1155. XIANG D, CEN J. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of Aerospace Power, 2015, 30(5):1149-1155(in Chinese).
[8] 万书亭, 佟海侠, 董炳辉. 基于最小二乘支持向量机的滚动轴承故障诊断[J]. 振动、测试与诊断, 2010, 30(2):149-152. WAN S T, TONG H X, DONG B H. Bearing fault diagnosis using wavelet packet transform and least square support vector machines[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(2):149-152(in Chinese).
[9] 郑红, 周雷, 杨浩. 基于小波包分析与多核学习的滚动轴承故障诊断[J]. 航空动力学报, 2015, 30(12):3035-3042. ZHENG H, ZHOU L, YANG H. Rolling bearing fault diagnosis based on wavelet packet analysis and multi kernel learning[J]. Journal of Aerospace Power, 2015, 30(12):3035-3042(in Chinese).
[10] ALI J B, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89(3):16-27.
[11] KANAI R A, DESAVALE R G, CHAVAN S P. Experimental-based fault diagnosis of rolling bearings using artificial neural network[J]. Journal of Tribology, 2016, 138(3):4032525.
[12] GOU Y Y, LI H B, DONG X M, et al. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities[J]. Chinese Journal of Aeronautics, 2017, 30(2):796-806.
[13] PI J, HUANG J B, MA L. Aero-engine fault diagnosis using optimized Elman neural network[J]. Mathematical Problems in Engineering, 2017(9):1-8.
[14] ZHAO N, ZHENG H, YANG L, et al. A fault diagnosis approach for rolling element bearing based on S-transform and artificial neural network[C]//ASME Turbo Expo:Power for Land, Sea, and Air, Volume 6:Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy, 2017:V006T05A003.
[15] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:Theory and applications[J]. Neurons Computing, 2006, 70(1-3):489-501.
[16] 卢锦玲, 绳菲菲, 赵洪山. 基于极限学习机的风电机组主轴承故障诊断方法[J]. 可再生能源, 2016, 34(11):1588-1594. LU J L, SHENG F F, ZHAO H S. Fault diagnosis method of wind turbine main bearing based on extreme learning machine[J]. Renewable Energy Resources, 2016, 34(11):1588-1594(in Chinese).
[17] 徐继亚, 王艳, 纪志成. 基于鲸鱼算法优化WKELM的滚动轴承故障诊断[J]. 系统仿真学报,2017(9):2189-2197. XU J Y, WANG Y, JI Z C. Fault diagnosis method of rolling bearing based on WKELM optimized by whale optimization algorithm[J]. Journal of System Simulation, 2017(9):2189-2197(in Chinese).
[18] YANG X, PANG S, SHEN W, et al. Aero-engine fault diagnosis using an optimized extreme learning machine[J]. International Journal of Aerospace Engineering, 2016:7892875.
[19] LU J, HUANG J, LU F. Sensor fault diagnosis for aero-engine based on online sequential extreme learning machine with memory principle[J]. Energies, 2017, 10(1):39.
[20] ZHU Q Y, QIN A K, SUGANTHAN P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(10):1759-1763.
[21] 关晓颖, 陈果, 林桐. 特征选择的多准则融合差分遗传算法及其应用[J]. 航空学报, 2016, 37(11):3455-3465. GUAN X Y, CHEN G, LIN T. Feature selection method based on differential evolution and genetic algorithm with multi-criteria evaluation and its applications[J]. Acta Aeronautica et Astronautica Sinca,2016,37(11):3455-3465(in Chinese).
[22] YAN M F, HU H, OTAKE Y, et al. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two phase flow[J]. Measurement Science & Technology, 2018, 29(5):055404.
[23] LAM H K, LING S H, LEUNG F H F, et al. Tuning of the structure and parameters of neural network using an improved genetic algorithm[C]//Conference of the IEEE 2001 Industrial Electronics Society, 2003:25-30.
[24] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feed-forward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4):879.
[25] MATIAS T,SOUZA F,SOUZA F, et al. Learning of a single-hidden layer feed-forward neural network using an optimized extreme learning machine[J]. Neuro Computing, 2014, 129:428-436.
[26] 郁磊, 史峰, 王辉, 等. MATLAB智能算法30个案例分析[M]. 2版. 北京:北京航空航天大学出版社, 2016:8. YU L, SHI F, WANG H, et al. Intelligent algorithm of MATLAB 30 case analysis[M]. 2nd ed. Beijing:Beihang University Press, 2016:8(in Chinese).