评估和鉴定高超声速飞行器防热材料使用性能,需要在能够模拟飞行气动热环境的高焓设备中进行大量地面试验。详细介绍了一种能够运行在大气压条件下的电感耦合等离子体设备,该设备能够产生多种气体(空气、氮气、二氧化碳、氩气)的等离子体射流,运行功率范围为27~85.5 kW,最大运行效率可达77.9%。通过对30 mm的亚声速喷管出口8 mm处空气等离子体流场参数高精度重构和发射光谱测试研究,获得了气体温度和光谱发射强度沿径向的分布,等离子体的焓值范围为8.54~22.2 MJ/kg,驻点热流最高可达721 W/cm2。选定2个试验状态对典型防热材料C/SiC进行烧蚀氧化考核试验,并通过与国内外同类设备比较,表明该大气压感应耦合等离子体设备达到国际先进水平,完全具备开展高超声速飞行器防热材料性能改进地面模拟试验的能力。
To evaluate the performance of thermal protection materials of hypersonic vehicles, it is needed to conduct ground tests in the high enthalpy facilities for simulating the aerothermal environment. A new inductive coupled plasma torch facility is introduced. The facility can operate under atmospheric pressure, and can produce plasma jets of air, nitrogen, carbon dioxide and argon, with the operation power ranging from 27 to 85.5 kW, and the maximum operating efficiency being about 77.9%. The parameters of the plasma flow field at the distance 8 mm away from the subsonic nozzle exit of the width of 30 mm is characterized based on high precision diagnostic of air plasma and emission spectroscopy test. The distribution of electron temperature and spectral emission intensity along the nozzle radial direction are obtained. The torch is found to induce a total enthalpy ranging from 8.54 to 22.2 MJ/kg, and the maximum heat flux at the stagnation point reaches 721 W/cm2. A comparison of our facility with similar facilities at home and abroad and ablation test of carbon fiber reinforced silicon carbide (C/SiC) under two typical test conditions show that the inductive coupled plasma torch facility can reach the international advanced level, and can be used for ground simulation tests for performance improvement of thermal protection materials of hypersonic vehicles.
[1] 崔尔杰. 近空间飞行器研究发展现状及关键技术问题[J].力学进展, 2009, 39(6):658-673. CUI E J. Rearch development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics, 2009, 39(6):658-673(in Chinese).
[2] ANDERSON J D. Hypersonic and high temperature gas dynamics[M].New York:McGraw-Hill Book Company, 2000:1988-1989.
[3] 姜维本. 高超声速试验设备设计[M].北京:国防工业出版社, 2001:9-14. JIANG W B. Hypersonic test facilities design[M]. Beijing:National Defence Industry Press, 2001:9-14(in Chinese).
[4] LIU Q M, ZHANG L T, LIU T J, et al. The oxidation behavior of SiC-ZrC-SiC-coated C/SiC minicomposites at ultrahigh temperatures[J]. Journal of the American Ceramic Society, 2010, 93(12):3990-3992.
[5] SAVINO R, FUMO D S, SILVESTRONI L, et al. Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials[J]. Journal of the European Ceramic Society, 2008, 28(9):1899-1907.
[6] 隆永胜, 杨彦广, 陈爱国, 等. 电弧加热流场品质优化初步研究[J].推进技术, 2015, 36(12):1788-1794. LONG Y S, YANG Y G, CHEN A G, et al. A preliminary research of optimization for arc heated flow quality[J]. Journal of Propulsion Technology, 2015, 36(12):1788-1794(in Chinese).
[7] FRANCESCO P, BERND H, OLIVIER C, et al. Surface temperature jump beyond active oxidation of carbon/silicon carbide composites in extreme aerothermal conditions[J]. Carbon, 2014, 71:102-119.
[8] 梁文林, 夏越良. 高频感应加热设备的原理、工程计算、调整与维修[M]. 北京:机械工业出版社, 1986:173-179. LIANG W L, XIA Y L. The principle, engineering calculation, adjustment and maintenance of high frequency induction heating facility[M]. Beijing:China Machine Press, 1986:173-179(in Chinese).
[9] 刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J]. 航空学报, 2017, 38(10):121317. LIU L P, WANG G L, WANG Y G, et al. Test methods for determining surface catalytic propeties of thermal protection materials in high enthalpy chemical nonequilibrium flows[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121317(in Chinese).
[10] LIU L P, WANG Y G, WANG G L, et al. Experiments to determine surface catalytic recombination coefficients of ultra high temperature ceramics in high temperature dissociated flows:AIAA-2017-2153[R]. Reston, VA:AIAA, 2017.
[11] ITO T, ISHIDA K, MIZUNO M, et al. 110 kW new high enthalpy wind tunnel heated by inductively coupled plasma:AIAA-2003-7023[R]. Reston, VA:AIAA, 2003.
[12] REED T B. Induction-coupled plasma torch[J]. Journal of Applied Physics, 1961, 32(5):821-824.
[13] NEILAND V Y. TSNⅡMASH capabilities for aerogas dynamical and thermal testing of hypersonic vehicles:AIAA-1992-3962[R]. Reston, VA:AIAA, 1992.
[14] BOTTIN B, CARBONARC M, STEFAN Z, et al. Aerothermodynamic design of an inductively coupled plasma wind tunnel:AIAA-1997-2498[R]. Reston, VA:AIAA, 1997.
[15] BOTTIN B, PARIS S, CARBONARC M, et al. Experimental and computational determination of the VKI plasmatron operating envelope:AIAA-1999-3607[R]. Reston, VA:AIAA, 1999.
[16] LUO L, WANG Y G, LIU L P, et al. Ablation behavior of C/SiC composites in plasma wind tunnel[J]. Carbon, 2016, 103:73-83.
[17] OWENS W P, UHL J, DOUGHERTY M, et al. Development of a 30 kW inductively coupled plasma torch facility for aerospace material testing:AIAA-2010-4322[R].Reston, VA:AIAA, 2010.
[18] BENTON R G, NOEL T C, PHILIP L V, et al. Characterization of a 50 kW inductively coupled plasma torch for testing of ablative thermal protection materials:AIAA-2017-0394[R]. Reston, VA:AIAA, 2017.
[19] KOLESNIKOV A F. The concept of local simulation for stagnation point heat transfer in hypersonic flows:Application and validation:AIAA-2000-2515[J]. Reston, VA:AIAA, 2000.
[20] FRANCESCO P, OLIVIER C, BERND H, et al. Gas/surface interaction study on ceramic matrix com-posite thermal protection system in the VKI plasmatron facility:AIAA-2011-3642[R]. Reston, VA:AIAA, 2011.
[21] MACDONALD M E, JACOBS C M, LAUX C O. Measurements of air plasma/ablator interactions in a 50 kW inductively coupled plasma torch:AIAA-2013-2772[R]. Reston, VA:AIAA, 2013.
[22] 杨栋, 王俊德, 赵宝昌, 等. 原子发射光谱双谱线法测量固体火箭发动机内燃气温度[J].光谱学与光谱分析, 2002, 22(2):307-310. YANG D, WANG J D, ZHAO B C, et al. Combustion gas temperature measurement in the chamber of solid rocket motor by double line of atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2002, 22(2):307-310(in Chinese).