针对具有冗余机械臂的自由漂浮空间机器人(Free Floating Space Robot, FFSR)点到点避免奇异性规划和控制问题,提出了一种冗余FFSR的点到点避免奇异控制方法。首先,该方法基于离散状态依赖李卡提方程(DSDRE)控制器设计方法,利用FFSR的动力学和运动学方程实现了FFSR系统方程的伪线性重构;然后,基于伪线性重构系统及DSDRE状态调节器设计方法实现了FFSR的关节角速度和末端位姿的同时跟踪控制;其次,根据跟踪控制器对FFSR广义雅克比矩阵(GJM)行满秩的设计要求,定义FFSR的奇异性判别依据,构造了避奇异约束函数;再次,由于冗余FFSR系统具有多逆运动学解特点,考虑关节角及关节角速度约束,结合避奇异约束函数设计了FFSR的期望轨迹在线规划器,进一步将设计的跟踪控制器与规划器相结合提出了冗余FFSR末端点到点避奇异运动控制方法。最后,为验证所提方法的有效性同时考虑简化计算,采用平面4连杆FFSR模型进行数值仿真,仿真结果表明所提点到点避奇异运动控制方法能够有效实现冗余FFSR系统的点到点避奇异运动。
A point-to-point singularity avoidance control method for the Free Floating Space Robot (FFSR) with the redundant manipulator is proposed in this paper. According to the Discrete State Dependent Riccati Equation (DSDRE) based controller design method, pseudo linear reconstruction of the FFSR system equation is realized by using the dynamic and kinematic equations for FFSR. Then, based on the pseudo linear equations and DSDRE state regulator design method, the tracking control of the joint angular velocity and effector's trajectory is realized. According to the requirements for full row rank of the Generalized Jacobian Matrix (GJM) in controller design, the singularity discrimination basis of FFSR is defined and the singular constraint function is constructed. Due to the characteristic of multi-inverse kinematics solutions for redundant FFSR systems, considering the constraints of joint angle and angular velocity, an online planner for FFSR's desired trajectory is designed with the constraint functions for singularity avoidance. A control method for point-to-point singularity avoidance is finally proposed by combining the designed tracking controller with the planner. To verify the effectiveness of the proposed method and simplify the computation, the planar 4-link FFSR model is used for numerical simulation. The simulation results show that the proposed method for point-to-point avoidance singularity control can effectively realize the avoidance of point-to-point singularity of redundant FFSR systems.
[1] FlORES A A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68(8):1-26.
[2] XU W F, LIANG B, XU Y. Survey of modeling, planning, and ground verification of space robotic systems[J]. Acta Astronautica, 2011, 68(11-12):1629-1649.
[3] UMETANI Y, YOSHIDA K. Resolved motion rate control of space manipulators with generalized Jacobian matrix[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3):303-314.
[4] DUBOWSKY S, PAPADOPOULOS E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5):531-543.
[5] GU Y L, XU Y. A normal form augmentation approach to adaptive control of space robot systems[J]. Dynamics & Control, 1995, 5(3):275-294.
[6] PARLAKTUNA O, OZKAN M. Adaptive control of free-floating space robots in Cartesian coordinates[J]. Advanced Robotics, 2004, 18(9):943-959.
[7] WANG H L. On adaptive inverse dynamics for free-floating space manipulators[J]. Robotics and Autonomous Systems, 2011, 59(10):782-788.
[8] WANG M M, LUO J, WALTER U. A non-linear model predictive controller with obstacle avoidance for a space robot[J]. Advances in Space Research, 2016, 57(8):1737-1746.
[9] ZHANG W H, QI N M, MA J, et al. Neural integrated control for a free-floating space robot with suddenly changing parameters[J]. Science China (Information Sciences), 2011, 54(10):2091-2099.
[10] 吴玉香, 王聪. 基于确定学习的机器人任务空间自适应神经网络控制[J]. 自动化学报, 2013, 39(6):806-815. WU Y X, WANG C. Deterministic learning based adaptive network control of robot in task space[J]. Acta Automatica Sinica, 2013, 39(6):806-815(in Chinese).
[11] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 33(12):2347-2354. ZHANG F H, FU Y L, WANG S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2347-2354(in Chinese).
[12] 徐文福. 空间机器人目标捕获的路径规划与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2007:50-90. XU W F. Path planning and experiment study of space robot for target capturing[D]. Harbin:Harbin Institute of Technology, 2007:50-90(in Chinese).
[13] 夏进军, 金明河, 刘宏. 一种用VM建模方法的空间机器人逆运动学算法[J]. 华中科技大学学报, 2009, 37(4):5-8. XIA J J, JING M H, LIU H. Inverse kinematics algorithm for space robots using the virtual manipulator approach[J]. Journal of Huazhong University of Science and Technology, 2009, 37(4):5-8(in Chinese).
[14] NANOS K, PAPADOPOULOS E. On cartesian motions with singularities avoidance for free-floating space robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2012:5398-5403.
[15] NANOS K, PAPADOPOULOS E. Avoiding dynamic singularities in Cartesian motions of free-floating manipulators[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3):2305-2318.
[16] 张福海, 付宜利, 王树国. 自由漂浮空间机器人回避动力学奇异的轨迹规划[J]. 机器人, 2012, 34(1):38-43. ZHANG F H, FU Y L, WANG S G. Trajectory planning of free-floating space robot with avoidance of dynamic singularity[J]. Robot, 2012, 34(1):38-43(in Chinese).
[17] XU W F, PENG J, LIANG B, et al. Hybrid modeling and analysis method for dynamic coupling of space robots[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(1):85-98.
[18] XU W F, LIANG B, XU Y. Practical approaches to handle the singularities of a wrist-partitioned space manipulator[J]. Acta Astronautica, 2011, 68(1):269-300.
[19] WANG M, LUO J, FANG J, et al. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm[J/OL]. Advances in Space Research. (2018-01-11)[2018-02-28] . https://doi.org/10.1016/j.asr.2018.01.011.
[20] XU W F, MENG D, LIU H, et al. Singularity-free trajectory planning of free-floating multiarm space robots for keeping the base inertially stabilized[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, PP(99):1-14.
[21] YOSHIDA K. The SpaceDyn:A matlab toolbox for space and mobile robots[J]. Journal of the Society of Instrument & Control Engineers, 1999, 38(7):138-143.
[22] ÇIMEN T. State-dependent Riccati equation (SDRE) control:A survey[J]. IFAC Proceedings Volumes, 2008,41(2):3761-3775.