流体力学与飞行力学

基于增广Burgers方程的音爆远场计算及应用

  • 张绎典 ,
  • 黄江涛 ,
  • 高正红
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2018-01-23

  修回日期: 2018-04-09

  网络出版日期: 2018-04-09

Far field simulation and applications of sonic boom based on augmented Burgers equation

  • ZHANG Yidian ,
  • HUANG Jiangtao ,
  • GAO Zhenghong
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-01-23

  Revised date: 2018-04-09

  Online published: 2018-04-09

摘要

音爆的精确模拟对于超声速客机的低音爆研究与设计意义重大。由于计算能力的限制,客机巡航高度的音爆全场直接模拟目前还难以实现。现有的音爆预测方法一般分为两步,先通过超声速线化理论或计算流体力学的方法得到音爆近场的过压值(Over-pressure)分布,再通过声学理论将近场声压信号推进至远场,以获得飞行器的地面音爆信号。在远场计算中,传统的波形参数法没有考虑音爆传播过程中的经典吸收和分子驰豫效应所造成的声能损失,得到的激波没有厚度,导致计算得到的远场声压级不准确。基于算子分裂法,开展了非线性声学中的增广Burgers方程的数值解法研究。通过计算第二届音爆预测研讨会(SBPW-2)发布的两个标准算例,验证了该方法可以实现地面音爆波形的精确预测。发现在近场声压信号前加入一段无幅值的缓冲信号可以有效提升"N"波上升时间的模拟精度。网格收敛性研究表明适当加密计算网格是有必要的。在此基础上研究了大气声吸收对地面波形的影响,发现分子驰豫效应的影响要强于经典吸收。最后,研究了不同湿度、温度对地面音爆波形的影响,发现干燥、低温的环境对音爆信号的过压值有抑制作用。

本文引用格式

张绎典 , 黄江涛 , 高正红 . 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018 , 39(7) : 122039 -122039 . DOI: 10.7527/S1000-6893.2018.22039

Abstract

Accurate simulation of sonic boom is of great importance for the study of low-boom design. It is hard to conduct direct full-field simulation of sonic boom at the cruising altitude of supersonic aircraft due to limitation of computing capacity. Current methods for sonic boom prediction usually have two steps. Firstly, the near field over-pressure is obtained according to the supersonic linearized theory or computational fluid dynamics. Then the near field signal is advanced to the far field using acoustic methods to get the ground pressure signature of aircraft. During the calculation of the far field, the traditional waveform parameter method does not take into consideration the loss of sound energy resulting from classical attenuation or molecular relaxation effect in propagation, so that the final shock waves obtained do not have thickness, making the far field sound pressure level inaccurate. This paper, based on the splitting method, investigates the numerical methods of the augmented Burgers equation in nonlinear acoustics. Two standard numerical examples published in the SBPW-2 are calculated, verifying that the method proposed can accurately predict the ground signature. It can be found that adding a zero-amplitude buffer signal to the near field signal is very effective to improve the simulation accuracy in the rising of ‘N’ wave. A study of mesh convergence demonstrates that it is useful to refine the grid density properly. A study of atmospheric sound absorption finds that the effect of relaxation effect is stronger than classical attenuation. Dry and cold atmosphere is found to have adverse effect on over-pressure of sonic boom signal based on an analysis of influence of humidity and temperature on ground pressure signature.

参考文献

[1] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8):2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese).
[2] PLOTKIN K J. State of the art of sonic boom modeling[J]. Journal of the Acoustical Society of America, 2002, 111(2):530-536.
[3] PLOTKIN K J. Sonic boom research:History and future (Invited):AIAA-2003-3575[R].Reston, VA:AIAA, 2003.
[4] 冯晓强. 超声速客机低声爆机理及设计方法研究[D].西安:西北工业大学, 2014:15. FENG X Q. The research of low sonic boom mechanism and design method of supersonic aircraft[D]. Xi'an:Northwestern Polytechnical University, 2014:15(in Chinese).
[5] CARLSON H W. Simplified sonic-boom prediction:NASA TR-1978-1122[R]. Washington, D.C.:NASA, 1978.
[6] PLOTKIN K. Review of sonic boom theory:AIAA-2003-3575[R]. Reston, VA:AIAA, 1989.
[7] RALLABHANDI S. Advanced sonic boom prediction using augmented burger's equation[J]. Journal of Aircraft, 2011, 48(4):1245-1253.
[8] YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in stratified atmosphere[J]. AIAA Journal, 2016, 54(10):1-9.
[9] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972.
[10] ANDERSON M D. The propagation of a spherical N wave in an absorbing medium and its diffraction by a circular aperture[R]. Austin:University of Texas at Austin, 1974.
[11] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:The University of Texas at Austin, 1995.
[12] 王刚, 马博平, 雷知锦, 等. 典型标模声爆的数值预测与分析[J]. 航空学报, 2018, 39(1):121458. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom prediction on several typical calculation models[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121458.
[13] FENG X, LI Z, SONG B. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics, 2014, 27(3):531-541.
[14] 冯晓强, 宋笔锋, 李占科, 等. 超声速飞机低声爆布局混合优化方法研究[J]. 航空学报, 2013, 34(8):1768-1777. FENG X Q, SONG B F, LI Z K, et al. Hybrid optimization approach reaseach for low sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1768-1777(in Chinese).
[15] RALLABHANDI S, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop:AIAA-2017-3257[R]. Reston,VA:AIAA, 2017.
[16] BLACKSTOCK D T. Thermoviscous attenuation of plane, periodic, finite amplitude sound waves[J]. Journal of the Acoustical Society of America, 1964, 36(3):534.
[17] CARLTON T W, BLACKSTOCK D T. Propagation of plane sound waves of finite amplitude in inhomogeneous fluids[J]. Journal of the Acoustical Society of America, 1974, 56(6):S42.
[18] PIERCE A D. Acoustics:An introduction to its physical principles and applications[M]. Columbus, OH:Mc-Graw-Hill Book Co., 1981:56-57.
[19] HAMILTON M F, BLACKSTOCK D T. Nonlinear acoustics[M]. New York:Academic Press, 1998:55.
[20] PLOTKIN K, MAGLIERI D. Sonic boom research:History and future (Invited):AIAA-2003-3575[R]. Reston, VA:AIAA, 2003.
[21] PARK M A, MORGENSTERN J M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2016, 53(2):578-598.
[22] PARK M A, NEMEC M. Near field summary and statistical ananalysis of the second AIAA sonic boom prediction workshop:AIAA-2017-3256[R]. Reston, VA:AIAA, 2017.
[23] RALLABHANDI S K. Application of adjoint methodology in various aspects of sonic boom design:AIAA-2014-2271[R]. Reston,VA:AIAA, 2014.
[24] 杨训仁, 陈宇. 大气声学[M]. 北京:科学出版社, 2007. YANG X R, CHEN Y. Atmosphericacoustics[M]. Beijing:Science Press, 2007(in Chinese).
[25] BAUER H J. Influences of transport mechanisms on sound propagation in gases[J]. Advances in Molecular Relaxation Processes, 1972, 2(2-4):319-376.
[26] EVANS L B, SUTHERLAND L C. Absorption of sound in air[J]. Journal of the Acoustical Society of America, 1971, 49(1):110.
[27] MARTINS J R, LAMBE A B. Multidisciplinary design optimization:A survey of architectures[J]. AIAA Journal, 2013, 51(9):2049-2075.
[28] HUAN Z, ZHENGHONG G, FANG X, et al. Review of robust aerodynamic design optimization for air vehicles[J/OL]. Archives of Computational Methods in Engineering, (2018-02-19)[2018-03-19]. https://doi.org/10.1007/s11831-018-9259-2.
[29] ZHAO H, GAO Z, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68:530-542.
[30] LEE Y S, HAMILTON M F. Time-domain modeling of pulsed finite-amplitude sound beams[J]. Journal of the Acoustical Society of America, 1995, 97(2):906-917.
[31] ATKINSON K E. An introduction to numerical analysis[M]. Hoboken, New Jersey:Wiley, 1978.
[32] BLOKHINTZEV D. The propagation of sound in an inhomogeneous and moving medium I[J]. Journal of the Acoustical Society of America, 1946, 18(2):322-328.
[33] ONYEONWU R O. The effects of wind and temperature gradients on sonic boom corridors:UTIAS No.168[R]. Toronto:University of Toronto, 1971.
[34] YAMAMOTO M, HASHIMOTO A, AOYAMA T, et al. A unified approach to an augmented Burgers equation for the propagation of sonic booms[J]. Journal of the Acoustical Society of America, 2015, 137(4):1857.
文章导航

/