In this paper, time-coordinated reentry guidance of multi-hypersonic vehicles is investigated in consideration of requirements of saturation attack. To solve the problem of unpredictability and uncontrollability of reentry time and achieve cooperative reentry, a new time-controlled reentry guidance law and cooperative reentry structure are proposed. The reentry guidance law improves real-time performance and constraint management capability of that of existing laws. The structure consists of two layers. To achieve the controllability and anti-interference of reentry flight time, the lower layer adopts the time-controlled reentry law based on the neural network. The upper layer generates time-coordinated information according to different coordination strategies based on characteristics of different reentry phases. The structure is suitable for centralized or distributed communication structure, and the upper coordination function can be designed and expanded according to needs of tasks. Time-controllability of the reentry guidance law and effectiveness of the reentry structure are verified by numerical simulations.
[1] 胡冬冬, 刘晓明, 张绍芳, 等. 2016年国外高超声速飞行器技术发展综述[J]. 战术导弹技术, 2017(1):28-33. HU D D, LIU X M, ZHANG S F, et al. Review of hypersonic technologies progress abroad in 2016[J]. Tactical Missile Technology, 2017(1):28-33(in Chinese).
[2] 高雁翎, 张梦湉, 贾晨阳. 2016年国外防空反导发展综述[J]. 战术导弹技术, 2017(2):16-20. GAO Y L, ZHANG M T, JIA C Y. Development review of world air and missile defense system in 2016[J]. Tactical Missile Technology, 2017(2):16-20(in Chinese).
[3] 李聪颖, 韩蕾, 高晓冬, 等. 再入反舰导弹多弹协同饱和攻击突防最优弹道研究[J]. 指挥与控制学报, 2015, 1(1):72-80. LI C Y, HAN L, GAO X D, et al. Study on optimalpe-netration trajectories of multi reentry anti-ship missiles for cooperative saturation attack[J]. Journal of comma-nd and control, 2015, 1(1):72-80(in Chinese).
[4] 王少平, 董受全, 李晓阳, 等. 助推滑翔高超声速反舰导弹多方向协同突防可行性研究[J]. 指挥控制与仿真, 2017, 39(2):55-60. WANG S P, DONG S Q, LI X Y, et al. Feasibility study of multi-direction coordinated penetration of the boost-glide hypersonic anti-ship missile[J]. Command Control and Simulation, 2017, 39(2):55-60(in Chinese).
[5] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2):260-266.
[6] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6):1605-1611. ZHAO S Y, ZHOU R. Multi-missile cooperativeguid-ance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1605-1611(in Chinese).
[7] ZHAO S Y, ZHOU R. Cooperativeguidance for multi-missile salvo attack[J]. Chinese Journal of Aeronautics, 2008, 21(6):533-539.
[8] MCLAIN T W, BEARD R W. Coordinationvariables, coordination functions, and cooperative timing mission[J]. Journal of Guidance Control & Dynamics, 2005, 28(1):150-161.
[9] 张友安, 马国欣, 王兴平. 多导弹时间协同制导:一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6):1109-1118. ZHANG Y A, MA G X, WANG X P. Time-cooperative guidance for multi-missiles:A Leader-Follower strategy[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1109-1118(in Chinese).
[10] 赵启伦, 陈建, 李清东, 等. 高超武器与常规导弹协同攻击策略可行域研究[J]. 航空学报, 2015, 36(7):2291-2300. ZHAO Q L, CHEN J, LI Q D, et al. Feasible region of hypersonic and ballistic missiles' cooperative attack strategy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2291-2300(in Chinese).
[11] LU P. Entry guidance:A unifiedmethod[J]. Journal of Guidance Control & Dynamics, 2014, 37(3):713-728.
[12] 刘思源, 梁子璇, 任章, 等. 高超声速滑翔飞行器再入段制导方法综述[J]. 中国空间科学技术, 2016, 36(6):1-13. LIU S Y, LIANG Z X, REN Z, et al. Review of reentry guidance methods for hypersonic gliding vehicles[J]. Chinese Space Science and Technology, 2016, 36(6):1-13(in Chinese).
[13] WANG Z, GRANT M J. Constrained trajectory optimiza-tion for planetary entry via Sequential convex program-ming[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2017:1-13.
[14] CHENG L, WANG Z, CHENG Y, et al.Multiconstrain-ed predictor-corrector reentry guidance for hypersonic vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2017:095441001772418.
[15] KURIKI Y, NAMERIKAWA T. Consensus-based coop-erative formation control with collision avoidance for a multi-UAV system[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2014:2077-2082.
[16] BRARD R W, MCLAIN T W, GOODRICH M A, et al. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics & Automation, 2002, 18(6):911-922.
[17] TOMIC S, BEKO M, RUI D. RSS-Based localization in wireless sensor networks using convex relaxation:noncooperative and cooperative schemes[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5):2037-2050.
[18] SHI P, SHEN Q. Cooperative control of multi-agent systems with unknown state-dependent controlling effects[J]. IEEE Transactions on Automation Science & Engineering, 2015, 12(3):827-834.
[19] 林涛, 刘永才, 关成启, 等. 飞航导弹协同作战使用方法探讨[J]. 战术导弹技术, 2005(2):8-12. LIN T, LIU Y C, GUAN C Q, et al. An investigation into the methods of cooperative engagenment for aerodynamic missile[J]. Tactical Missile Technology, 2005(2):8-12(in Chinese).
[20] 王光伦. 高超声速飞行器再入段预测校正制导研究[D]. 哈尔滨:哈尔滨工业大学, 2010:18-19. WANG G L. Predictor-corrector reentry guidance for hypersonic vehicles[D].Harbin:Harbin Institute of Technology, 2010:18-19(in Chinese).
[21] PHILLIPS T H. A common aero vehicle (CAV) model, description, and employment guide[R]. Albuqerque, New Mexico:Schafer Corp-oration for AFRL and AFSPC, 2003.
[22] SUTTON R, BARTO A. Reinforcement Learning:An Introduction[M]. Massachusetts:MIT Press, 2005:235-304.
[23] DU X, GAO M F.The application of identifying numbers on artificial neural network[J]. Computer Systems Applications, 2007(2):21-22.