流体力学与飞行力学

周向非均匀叶尖间隙对轴流压气机性能的影响

  • 向宏辉 ,
  • 葛宁 ,
  • 高杰 ,
  • 唐凯 ,
  • 杨荣菲
展开
  • 1. 中国航发四川燃气涡轮研究院 叶轮机试验研究室, 江油 621703;
    2. 南京航空航天大学 能源与动力学院, 南京 210016

收稿日期: 2017-06-07

  修回日期: 2017-08-31

  网络出版日期: 2018-02-11

基金资助

航空动力基金(6141B090303);四川省应用基础研究项目(2017JY0040)

Effect of circumferential non-uniform tip clearance on performance of axial compressor

  • XIANG Honghui ,
  • GE Ning ,
  • GAO Jie ,
  • TANG Kai ,
  • YANG Rongfei
Expand
  • 1. Laboratory of Turbomachinery Experiment, AECC Sichuan Gas Turbine Establishment, Jiangyou 621703, China;
    2. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2017-06-07

  Revised date: 2017-08-31

  Online published: 2018-02-11

Supported by

Aviation Power Foundation of China (6141B090303); Applied Basic Research Project of Sichuan Province (2017JY0040)

摘要

以跨声速单级轴流压气机为研究对象,通过改变转子外机匣椭圆度产生周向稳态非均匀叶尖间隙布局结构,在高转速压气机试验器上详细开展了周向非均匀叶尖间隙对压气机性能特性与稳定边界影响的试验研究。同时,结合转子叶尖间隙流场动态压力精细化测量,揭示了周向非均匀叶尖间隙触发压气机内部流动失稳的物理机制。试验结果表明:转子叶尖周向非均匀间隙对压气机流量、压比和效率基本没有产生影响,但对气动稳定性具有显著影响。随着转子机匣椭圆度增大,稳定工作边界逐渐向右下方偏移,压气机稳定工作范围不断减小;不同转速下,压气机稳定裕度损失程度并不相同,高转速工作区域的压气机稳定裕度损失程度要大于中低转速工作区域的;周向非均匀叶尖间隙会导致原有转子叶片气动负荷沿径向重新分布,弱化转子叶片尖部气动加功能力;设计转速时,相比于小间隙情况,大间隙下的泄漏涡与通道激波相互作用,使得相邻叶片压力面侧的高静压低速区域扩大,加重对转子通道的堵塞作用。

本文引用格式

向宏辉 , 葛宁 , 高杰 , 唐凯 , 杨荣菲 . 周向非均匀叶尖间隙对轴流压气机性能的影响[J]. 航空学报, 2018 , 39(2) : 121491 -121491 . DOI: 10.7527/S1000-6893.2017.121491

Abstract

A steady circumferential non-uniform tip clearance structure is developed by changing the ellipticity of the rotor casing in a transonic single axial compressor. The effect of the circumferential non-uniform rotor tip clearance on the performance characteristics and stability working boundary of the compressor is experimented on a test facility of the high rotating speed compressor. The mechanism of the internal flow instability of the compressor induced by the circumferential non-uniform tip clearance is also presented by measuring the dynamic pressure flowfield parameters of the rotor tip clearance. The experimental results show that the circumferential non-uniform tip clearance has almost no effect on the mass flow, pressure ratio and adiabatic efficiency of the compressor, but it has significant effect on the aerodynamic stability of the compressor. As the ellipticity of the rotor casing increases, the stability operation range of the compressor decreases. The stability margin loss is higher at the high speed working area than that at the middle and low speed working areas. The circumferential non-uniform tip clearance can lead to radial redistribution of aerodynamic load of the compressor rotor blade, and then weaken the work capacity at the rotor blade tip area. Different from that with the small tip clearance, with the large tip clearance, the tip leakage vortex interacts with the passage shock at the design speed, and the high static pressure area at the pressure surface of the adjacent blade enlarges to result in more serious blocking effect on the rotor passage.

参考文献

[1] RAINS D A. Tip clearance flows in axial compressors and pumps[D]. Pasadena,CA:California Institute of Technology, 1954:1-88.[2] SAKULKAEW S, TAN C S, DONAHOO E, et al. Compressor efficiency variation with rotor tip gap from vanishing to large clearance[J]. Journal of Turbomachinery, 2013, 135(3):35-48.[3] DU J, LIN F, ZHANG H W, et al. Numerical investigation on the originating mechanism of unsteadiness in tip leakage flow for a transonic fan rotor:GT2008-51463[R]. New York:ASME, 2008.[4] ADAMCZYK J J, CELESTINA M L, GREITZER E M. The role of tip clearance in high-speed fan stall[J]. Jour-nal of Turbomachinery, 1993, 115(1):28-39.[5] HAH C, BERGNER J, SCHIFFER H. Short length-scale rotating stall inception in a transonic axial compressor criteria and mechanisms:GT2006-90045[R]. New York:ASME, 2006.[6] VO H D, TAN C S, GREITZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery, 2008, 130(1):1-9.[7] COPENHAVER W W, MAYHEW E, HAH C, et al. The effect of tip clearance on a swept transonic compressor rotor:GT1994-363[R]. New York:ASME, 1994.[8] YAMADA K, KIKUTA H, FURUKAWA M, et al. Effects of tip clearance on the stall inception process in an axial compressor rotor:GT2013-95479[R]. New York:ASME, 2013.[9] HOYING D A, TAN C S, VO H D, et al. Role of blade passage flow structures in axial compressor rotating inception[J]. Journal of Turbomachinery, 1999, 121(4):735-742.[10] 谢芳, 楚武利, 李相君, 等.叶尖间隙对跨声速轴流压气机近失速的影响[J]. 航空动力学报, 2014, 29(10):2417-2423. XIE F, CHU W L, LI X J, et al. Influence of blade tip clearance at near-stall condition on transonic axial-flow compressor[J]. Journal of Aerospace Power, 2014, 29(10):2417-2423(in Chinese).[11] 付磊, 宋西镇, 袁巍, 等.跨声速压气机转子叶尖非定常流场数值研究[J]. 航空动力学报, 2013, 28(12):2821-2828. FU L, SONG X Z, YUAN W, et al. Numerical investigations on unsteady flow field at tip region in transonic compressor rotor[J]. Journal of Aerospace Power, 2013, 28(12):2821-2828(in Chinese).[12] 刘东健, 李军, 李建伟, 等. 转子叶顶间隙泄漏流轨迹前移的动力学机制[J]. 航空动力学报, 2014, 29(7):1680-1687. LIU D J, LI J, LI J W, et al. Dynamics mechanism of tip leakage flow trajectory movement in rotor[J]. Journal of Aerospace Power, 2014, 29(7):1680-1687(in Chinese).[13] 张晨凯, 胡骏, 王志强, 等. 轴流压气机转子叶尖间隙流动结构的数值研究[J]. 航空学报, 2014, 35(5):1236-1245. ZHANG C K, HU J, WANG Z Q, et al. Numerical study on tip clearance flow structure of an axial flow compressor rotor[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1236-1245(in Chinese).[14] 刘宝杰, 张志博, 于贤君. 轴流压气机转子叶尖泄漏堵塞特性的试验研究[J]. 航空学报, 2013, 34(12):2682-2691. LIU B J, ZHANG Z B, YU X J. Experimental investigation on characteristics of tip leakage blockage in an axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2682-2691(in Chinese).[15] 于洋, 刘巧英, 沈倍毅, 等. 高压压气机径向间隙分析[J]. 推进技术, 2013, 34(3):339-346. YU Y, LIU Q Y, SHEN B Y, et al. Radial clearance analysis on high pressure compressor[J]. Journal of Propulsion Technology, 2013, 34(3):339-346(in Chinese).[16] GRAF M B, WONG T S, GREITZER E M, et al. Effects of nonaxisymmetric tip clearance on axial compressor performance and stability[J]. Journal of Turbomachinery, 1998, 120(4):648-661.[17] GORDON K A. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressor[D]. Boston, MA:Massachusetts Insitute of Technology, 1999:1-388.[18] CAMERON J D, BENNINGTON M A, ROSS M H, et al. Effects of steady tip clearance asymmetry and rotor whirl on stall inception in an axial compressor:GT2007-28278[R]. New York:ASME, 2007.[19] MARE L D, IMREGUN M, GREEN J S. Effect of real geometry on compressor performance predictions:GT2009-59824[R]. New York:ASME, 2009.[20] KANG Y S, KANG S H. Prediction of the nonuniform tip clearance effect on the axial compressor flow field[J]. Journal of Fluids Engineering, 2010, 132(5):051110.[21] SONG S J, CHO S H. Nonuniform flow in a compressor due to asymmetric tip clearance[J]. Journal of Turbomachinery, 2000, 122(4):751-760.[22] 梁武昌, 楚武利, 朱俊强, 等. 非轴对称尖部间隙对轴流压气机性能影响的实验研究[J]. 航空动力学报, 2004, 19(2):233-236. LIANG W C, CHU W L, ZHU J Q, et al. Effects of asymmetric tip clearance on axial flow compressor performance[J]. Journal of Aerospace Power, 2004, 19(2):233-236(in Chinese).[23] 陈颖秀, 侯安平, 张明明, 等. 轴流压气机机匣变形对多排转子流场特性的影响[J]. 航空学报, 2016, 37(11):3284-3295. CHEN Y X, HOU A P, ZHANG M M, et al. Effects of casing deformation on blade rows flow field characteristics in an axial-flow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3284-3295(in Chinese).[24] 桂幸民, 王同庆, 于清, 等. 跨音压气机转子叶尖流场试验与分析[J]. 工程热物理学报, 1998, 19(5):553-558. GUI X M, WANG T Q, YU Q, et al. Investigation on the tip clearance flow field in a transonic compressor rotor[J]. Journal of Engineering Thermophysics, 1998, 19(5):553-558(in Chinese).
文章导航

/