当飞机在积水跑道上起飞着陆滑跑时,由于起落架机轮溅水引起的进气道吸水问题是非常复杂的。提出了分析机轮溅水轨迹形态及对进气道影响的两种方法:类比法和数值模拟法。以机轮溅水的典型初始参数为输入,运用上述两种方法,对某国产运输机A的进气道吸水特性进行分析,为其适航符合性提供依据。分析结果表明:该飞机在研究范围内的各个典型溅水初始参数条件下,进气道均处于起落架机轮的溅水覆盖区域以外,符合适航条例相关要求;数值模拟结果给出了典型参数下机轮溅水被内侧短舱进气道吸入的临界条件:侧向溅水初始速度达到69 m/s以上,同时垂向溅水初始速度至少达到40 m/s以上。
When an airplane passes through the water standing on runways and taxiways, the water ingestion from wheel spray is a very complex process. To analyze the characteristic of water spray and its effect on engine ingestion, two methods are proposed:analogy and numerical simulation. With the input of wheel spray typical initial parameters, the two methods are applied to analyze the water ingestion characteristics of engine inlet of domestic transport A, which could be provided as airworthiness compliance evidence. The results illustrate that the inlet would not suck spray water and demonstrate its agreement to the regulation. Numerical simulation result gives the boundary condition when the water from wheel spray is ingested by the inlet engine:side splash velocity increases to over 69 m/s, and vertical splash velocity also increases to over 40 m/s.
[1] SÁNTA I. The effect of water ingestion on the operation of the gas turbine engine[C]//ICAS 2000 Congress.Bonn:International Council of the Aeronautical Sciences, 2000:524.1-524.9.[2] Federal Aviation Administration. Water ingestion testing for turbine powered airplanes:Advisory Circular No. 20-124[S]. Washington, D.C.:Federal Aviation Administration, 2003.[3] Federal Aviation Administration. Flight test guide for certification of transport category airplanes:Advisory Circular No. 25-7[S]. Washington, D.C.:Federal Aviation Administration, 1998.[4] 中国民航总局.中国民用航空总局关于CCAR-33-R1的修订:民航总局令第109号[S]. 北京:中国民航总局, 2002:12-16. Civil Aviation Administration of China. CCAR-33-R1 revision:Civil Aviation Administration of China order-109[S].Beijing:Civil Aviation Administration of China, 2002:12-16(in Chinese).[5] 戚学锋, 曾涛. 民用飞机动力装置溅水试验适航验证方法[J]. 航空发动机, 2013, 39(3):55-58. QI X F, ZENG T. Water ingestion certification test method of civil aircraft power system[J]. Aeroengine, 2013, 39(3):55-58(in Chinese).[6] BRIDE M,EILLIS E. An experimental investigation of the scale relations for the impinging water spray generated by a planning surface:NACA-TN-3615[R]. Washington, D. C.:NACA, 1956.[7] BARRETT R B. Drag and spray measurements from a small pneumatic tyre travelling through a water layer[R]. London:Ministry of Aviation, 1965.[8] 王传煌, 崔健勇. 民用飞机的起落架溅水试验[J].飞行试验, 1992, 4(2):36-39. WANG C H, CUI J Y. Wheel spray and aquaplaning test of civil aircraft landing gear[J]. Flight Test, 1992, 4(2):36-39(in Chinese).[9] JUSTIN D C, MARK N S. Wheel mounted water spray deflector:US7118067B2[P]. 2006-10-10.[10] 张岳青, 徐绯, 段敏鸽, 等. 飞机轮胎溅水计算方法及翻边轮胎挡水原理分析[J]. 科学技术工程, 2014, 14(6):54-59. ZHANG Y Q, XU F, DUAN M G, et al. Method for estimating the water spray of aircraft tyre and water retaining analysis of chine tyre[J]. Science Technology and Engineering, 2014, 14(6):54-59(in Chinese).[11] BARRETT R V. Research into slush drag,wheel spray and aquaplaning at bristol university using small pneumatic tyres[D]. Bristol:University of Bristol, 1971:24-30.[12] OROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup:SAE Technical Paper 872089[R]. Warrendale,PA:SAE International, 1987.[13] LIU A B, MATHER D, REITZ R D. Modeling the effects of drop drag and breakup on fuel sprays:SAE Technical Paper 930072[R]. Warrendale,PA:SAE International, 1993.[14] GOODEN J H M. CR spray-Impingement drag calculation of aircraft on water-contaminated runways:NLR-TP-2001-204[R]. Amsterdam:National Aerospace Laboratory NLR, 2001.[15] DAUGHERTY R H, STUBBS S M. Measurements of flow rate and trajectory of aircraft tire-generated water spray:NASA-TP-2718[R]. Washington, D. C.:NASA, 1987.[16] Engineering Sciences Data Unit. Estimation of spray patterns generated from the sides of aircraft tyres running in water or slush:83042[S]. London:Engineering Sciences Data Unit, 1998.[17] GOODEN J H M. Engine ingestion as a result of crosswind during take-offs from water contaminated runways:NLR-TP-2013-201[R]. Amsterdam:National Aerospace Laboratory NLR, 2013.[18] ZHAO K, LIU P, QU Q, et al. Numerical simulation of aircraft tire-generated spray and engine ingestion on flooded runways[J]. Journal of Aircraft, 2017, 54(5):1840-1848.[19] QU Q, ZHANG F, LIU P, et al. Numerical simulation of water spray caused by a rolling airplane tire[J]. Journal of Aircraft, 2016, 53(1):182-188.[20] ANSYS Inc. ANSYS FLUENT 14.0 user's guide[M]. Pittsburgh, PA:ANSYS Inc., 2012.