电子电气工程与控制

基于死区补偿的氧调器平稳切换自抗扰控制

  • 董方酉 ,
  • 孙青林 ,
  • 张晓雷 ,
  • 蒋玉新 ,
  • 孙明玮 ,
  • 陈增强
展开
  • 南开大学 计算机与控制工程学院, 天津 300350

收稿日期: 2017-11-17

  修回日期: 2018-02-10

  网络出版日期: 2018-02-10

基金资助

国家自然科学基金(61273138,61573197);天津市重点基金(14JCZDJC39300);国家科技支撑计划(2015BAK06B04);天津市科技支撑计划重点项目(14ZCZDSF00022)

Smooth-switching active disturbance rejection control for oxygen regulator based on dead-zone compensation

  • DONG Fangyou ,
  • SUN Qinglin ,
  • ZHANG Xiaolei ,
  • JIANG Yuxin ,
  • SUN Mingwei ,
  • CHEN Zengqiang
Expand
  • College of Computer and Control Engineering, Nankai University, Tianjin 300350, China

Received date: 2017-11-17

  Revised date: 2018-02-10

  Online published: 2018-02-10

Supported by

National Natural Science Foundation of China (61273138, 61573197); Key Fund of Tianjin (14JCZDJC39300); National Key Technology R&D Program (2015BAK06B04); Keys Technologies R&D Program of Tianjin (14ZCZDSF00022)

摘要

歼击机中供氧系统内的氧气气压调节系统(氧调器系统)对飞行员的飞行质量至关重要。但是氧调器系统易受飞行环境和飞行员呼吸状态等因素的影响,而且氧调器所用阀门大多含有死区,会给控制系统带来稳态误差,导致控制难度增大,一般的控制策略难以兼顾补偿较大死区和抗扰两个条件。针对此问题,建立了基于音圈电机驱动阀的氧调器系统模型,并针对模型死区特性采用了死区补偿和双限幅模块,设计了基于死区补偿的平稳切换自抗扰控制策略。仿真及对比结果表明:采用同一套控制参数,可以使氧气面罩内压强在各个呼吸频率时有效,并快速地控制在呼吸阻力容许界限以内;并且其呼吸阻力低于将死区看作扰动的一般自抗扰控制(ADRC)。同时,验证了此策略的鲁棒性和抗扰性。

本文引用格式

董方酉 , 孙青林 , 张晓雷 , 蒋玉新 , 孙明玮 , 陈增强 . 基于死区补偿的氧调器平稳切换自抗扰控制[J]. 航空学报, 2018 , 39(5) : 321875 -321875 . DOI: 10.7527/S1000-6893.2018.21875

Abstract

The oxygen pressure regulator system (oxygen regulator system) for fighter aircraft is essential to pilot's flying qualities. However, the oxygen regulator system is susceptible to the factors such as flight environment and breathing state of pilots, and most valves of the oxygen regulator have dead-zone, which causes steady-state error of the control system and makes control more difficult. Conventional control strategy cannot compensate the big dead-zone and resist disturbance either. To solve this problem, this paper develops an oxygen regulator model based on the valve driven by the voice coil motor. In consideration of the dead-zone characteristics of the model, the dead-zone compensation and double-limiting module are adopted to design the smooth-switching active disturbance rejection control (ADRC) strategy based on the feed-forward compensation. The simulation and comparison results demonstrate that by using the same set of control parameters, the respiratory pressure in the oxygen mask can be effectively and rapidly controlled within the allowable limits of respiratory resistance at various respiratory frequencies, and the breathing resistance is lower than the general ADRC which considers the dead-zone as disturbance. The robustness and immunity of the strategy are verified.

参考文献

[1] 肖华军. 航空供氧装备生理研究回顾与展望[J]. 航空学报, 2001, 22(5):441-443. XIAO H J. Review and expectation on the physiological research about the aviation oxygen equipment[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(5):441-443(in Chinese).
[2] 俞笑, 孙兵, 林贵平,等. ATmega128单片机在电子式氧气调节器上的应用[J]. 网络新媒体技术, 2009, 30(12):50-56. YU X, SUN B, LIN G P, et al. ATmega128 singlechip using on aircraft electronic oxygen regulator[J]. Microcomputer Applications, 2009, 30(12):50-56(in Chinese).
[3] 李子轩, 林贵平, 曾宇, 等. 基于LabVIEW的电子式氧调器PID控制系统的设计[J]. 计算机测量与控制, 2016, 24(3):80-83. LI Z X, LIN G P, ZENG Y, et al. Control system designed for electronic oxygen regulator based on LabVIEW[J]. Computer Measurement and Control, 2016, 24(3):80-83(in Chinese).
[4] 中国航空综合技术研究所. 航空供养装备呼吸阻力容许界限:GJB 1013-90[S]. 北京:中国航空综合技术研究所, 1990. China Aero Polytechnology Establishment. Acceptable levels for breathing resistance of aircraft oxygen equipment:GJB 1013-90[S]. Beijing:China Aero Polytechnology Establishment, 1990(in Chinese).
[5] 孙灿飞, 蔡元友, 龙海军. 电子式氧气调节器中步进电机模糊控制技术研究[J]. 测控技术, 2013, 32(4):78-81. SUN C F, CAI Y Y, LONG H J. Research on stepping motor fuzzy control technology application in the aircraft electronic oxygen regulator[J]. Measurement and Control Technology, 2013, 32(4):78-81(in Chinese).
[6] JIANG Y X, SUN Q L, ZHANG X L, et al. Pressure regulation for oxygen mask based on active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2017, PP(99):1-9.
[7] ZENG Y, DU C H, ZHOU Y, et al. Design of electronic aviation oxygen regulator structure[J]. Applied Mechanics & Materials, 2013, 421(1):150-156.
[8] JIANG Y X, SUN Q L, CHEN Z Q, et al. Modeling and simulation of an electronic oxygen regulator based on generalized predictive control algorithm[C]//34th China Control Conference(CCC). Piscataway, NJ:IEEE Press, 2015:4067-4072.
[9] 李妍, 毛志忠, 王福利, 等. 电弧炉电极调节系统的自适应死区补偿控制[J]. 控制与决策, 2010, 25(10):1474-1478. LI Y, MAO Z Z, WANG F L, et al. Adaptive deadzone compensation control of electrode regulating system of electric arc furnace[J]. Control and Decision, 2010, 25(10):1474-1478(in Chinese).
[10] WANG Z H, YANG B, CHENG L, et al. Robust adaptive dead-zone compensation of DC servo system[J]. IEE Proceedings Control Theory and Applications, 2006, 153(6):709-713.
[11] 陈增强, 程赟, 孙明玮, 等. 线性自抗扰控制理论及工程应用的若干进展[J]. 信息与控制, 2017, 46(3):257-266. CHEN Z Q, CHENG Y, SUN M W, et al. Surveys on theory and engineering applications for linear active disturbance rejection control[J]. Information and Control, 2017, 46(3):257-266(in Chinese).
[12] 兴连国, 周惠兴, 侯书林, 等. 音圈电机研究及应用综述[J]. 微电机, 2011, 44(8):82-87. XING L G, ZHOU H X, HOU S L, et al. Research and application of voice coil motor[J]. Micromotors, 2011, 44(8):82-87(in Chinese).
[13] 张大卫, 冯晓梅. 音圈电机的技术原理[J]. 中北大学学报(自然科学版), 2006, 27(3):224-228. ZHANG D W, FENG X M. The technical principle of voice-coil actuator[J]. Journal of North University of China (Natural Science Edition), 2006, 27(3):224-228(in Chinese).
[14] WHITE F M. Fluid mechanics[M]. 7th ed. New York:McGraw-Hill, 2011:154-163.
[15] BEAUMONT M, LEJEUNE D, ISABEY D, et al. Positive pressure generation by pneumatic and electronic O2 regulators:a bench experimental evaluation[J]. Aviation Space and Environmental Medicine, 1999, 70(8):812-816.
[16] 中国航空综合技术研究所. 飞行员飞行中肺通气参数:GJB 305-87[S]. 北京:中国航空综合技术研究所, 1987. China Aero Polytechnology Establishment. Pilot's parameters of pulmonary ventilation during flight:GJB 305-87[S]. Beijing:China Aero Polytechnology Establishment, 1987(in Chinese).
[17] HAN J Q. From PID to active disturbance rejection control[J]. Industrial Electronics IEEE Transactions, 2009, 56(3):900-906.
[18] GAO Z Q, Scaling and bandwidth-parameterization based controller tuning[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2003, 4989-4996.
[19] 吴超, 王浩文, 张玉文, 等. 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015, 36(2):473-483. WU C, WANG H W, ZHANG Y W, et al. LADRC-based trajectory tracking for unmanned helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):473-483(in Chinese).
[20] 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制[J]. 航空学报, 2012, 33(11):2121-2129. LI Z X, LI G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2121-2129(in Chinese).
[21] ZHENG Q, GAO L Q, GAO Z. On validation of extend ed state observer through analysis and experimentation[J]. Journal of Dynamic Systems Measurement and Control, 2012, 134(2):024505-1-11.
[22] XIA Y Q, PU F, LI S F, et al. Lateral path tracking control of autonomous land vehicle based on ADRC and differential flatness[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3091-3099.
[23] 刘善慧, 梅雪松, 李健, 等. 多色套准系统前馈自抗扰控制器设计[J]. 机械工程学报, 2015, 51(5):143-150. LIU S H, MEI X S, LI J, et al. Design feed-forward active disturbance rejection control controller for multi-color register system[J]. Journal of Mechanical Engineering, 2015, 51(5):143-150(in Chinese).
[24] 薛安成, 耿继瑜, 刘瑞煌,等. 限幅环节对DFIG故障中输出特性的影响研究[J]. 电力自动化设备, 2017,37(10):29-32. XUE A C, GENG J Y, LIU R H, et al. Impact of limiter on output characteristics of DFIG during fault[J]. Electric Power Automation Equipment, 2017,37(10):29-32(in Chinese).
[25] 张超, 朱纪洪, 高亚奎. 自抗扰控制器的阶次与参数的选取[J]. 控制理论与应用, 2014, 31(11):1480-1485. ZHANG C, ZHU J H, GAO Y K. Order and parameter selections for active disturbance rejection controller[J]. Control Theory and Applications, 2014, 31(11):1480-1485(in Chinese).
文章导航

/