流体力学与飞行力学

DDES方法在复杂旋翼流场计算中的应用

  • 董军 ,
  • 叶靓
展开
  • 中国航空工业空气动力研究院, 沈阳 110034

收稿日期: 2017-08-23

  修回日期: 2018-02-09

  网络出版日期: 2018-02-09

Application of DDES method to simulation of complicated rotor flowfield

  • DONG Jun ,
  • YE Liang
Expand
  • AVIC Aerodynamics Research Institute, Shenyang 110034, China

Received date: 2017-08-23

  Revised date: 2018-02-09

  Online published: 2018-02-09

摘要

应用延迟脱体涡模拟(DDES)方法,进行了复杂分离流动旋翼流场的数值模拟研究。为控制计算规模,更好地模拟旋翼桨叶近壁面附近区域流动分离及远场尾迹发展,采用了贴体与背景自适应直角网格嵌套的网格系统;同时为提高计算速度,采用了基于分布式存储的数据并行模式,实现了贡献单元搜索、洞切割和流场计算的并行化。计算工作包含一个共轴双旋翼悬停和单旋翼下降状态,目的是分别讨论DDES方法在旋翼表面附近空间区域是否存在大范围分离时计算结果与雷诺平均Navier-Stokes结果之间的差异。计算表明,对于下降状态,DDES方法预测出了更强的尾迹区分离流动;对于桨叶表面基本为附着流动的双旋翼中等桨距角情况,两种方法预测的流场结构相似,仅在下旋翼桨叶气动力和旋翼桨根下方空间区域的诱导速度计算结果上存在微细差异。

本文引用格式

董军 , 叶靓 . DDES方法在复杂旋翼流场计算中的应用[J]. 航空学报, 2018 , 39(6) : 121689 -121689 . DOI: 10.7527/S1000-6893.2018.21689

Abstract

Characteristics of rotorcraft flow fields which contains complicated airflow detached phenomenon are simulated by Delayed Detached Eddy Simulation (DDES). The embedded grid system constructed by combining adaptive background Cartesian and body-fitted grid is adopted to simulate simultaneously the flow separation in the near wall region and the wake evolution in far fields when the computation resource is limited. The flow fields iteration, hole cutting and donor searching processes are parallelized based on the message passing library (distributed-memory parallelization) to improve computing efficiency. Flow fields of a coaxial rotor in hover and a single rotor in descending state are simulated, aiming to discuss the differences where large range of flow separations near the blade surface region exist or not with DDES and Reynolds-averaged Navier-Stokes method. Results show that in the descending status, more strengthen separations and unsteady phenomenon are predicted in the rotor wake with DDES, the predicted coaxial rotor flow fields are similar with different methods, as the attached flow is dominated with moderate collective blade angle, the slim discrepancy is observed only on the lower rotor blades aerodynamics and induced velocity beneath the rotor root.

参考文献

[1] STRAWN R C, CARADONNA F X, DUQUE E P N. 30 years of rotorcraft computational fluid dynamics research and development[J]. Journal of the American Helicopter Society, 2006, 51(1):5-21.
[2] CORONADOL P, VELEZ C, ILIE M, et al. High angle of attack helicopter blade-vortex interaction; numerical studies using LES:AIAA-2011-0055[R]. Reston, VA:AIAA, 2011.
[3] MEDIDA S, BAEDER J D. Numerical investigation of 3-D dynamic stall using delayed detached eddy simulation:AIAA-2012-0099[R]. Reston, VA:AIAA, 2012.
[4] BAI J Q, WANG B, SUN Z W. The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method[J]. Acta Aerodynamica Sinica, 2012, 30(3):373-379.
[5] DECK S, LUCKRING J M. Zonal detached eddy simulation (ZDES) of the flow around the AVT-183 diamond wing configuration[J]. Aerospace Science And Technology, 2016, 57:43-51.
[6] ZHANG Y, ZHANG L P, HE X, et al. Detached-eddy simulation of subsonic flow past a delta wing[J]. Procedia Engineering, 2015, 126:584-587.
[7] CUMMINGS R M, SCHUTTE A. Detached-eddy simulation of the vortical flow field about the VFE-2 delta wing[J]. Aerospace Science and Technology, 2013, 24:66-76.
[8] SPALART P R, STRELETS H, ALLMARAS S R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference on DNS/LES, 1997.
[9] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[10] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202.
[11] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29:1638-1649.
[12] JAIN R, POTSDAM M A. Hover predictions on the Sikorsky S-76 rotor using Helios:AIAA-2014-0207[R]. Reston, VA:AIAA, 2014.
[13] YOON S, CHADERJIAN N M, PULLIAM T H, et al. Effect of turbulence modeling on hovering rotor flows:AIAA-2015-2766[R]. Reston, VA:AIAA, 2015.
[14] JAIN R. A comparison of CFD hover predictions for the Sikorsky S-76 Rotor:AIAA-2016-0032[R]. Reston, VA:AIAA, 2016.
[15] SHENG C H, ZHAO Q Y, HILL M. Investigations of XV-15 rotor hover performance and flow field using U2NCLE and HELIOS codes:AIAA-2016-0303[R]. Reston, VA:AIAA, 2016.
[16] YOON S, CHAN W M, PULLIAM T H. Computations of torque-balanced coaxial rotor flows:AIAA-2017-0052[R]. Reston, VA:AIAA, 2017.
[17] 吴琪, 招启军, 赵国庆, 等. 基于隐式算法的悬停旋翼黏性绕流高效CFD分析方法[J]. 空气动力学学报, 2015, 33(4):454-463. WU Q, ZHAO Q J, ZHAO G Q, et al. Highly-efficient CFD calculations on viscous flow of hovering rotor based on the implicit algorithm[J]. Acta Aerodynamica Sinica, 2015, 33(4):454-463(in Chinese).
[18] 叶舟, 徐国华, 史勇杰. 直升机旋翼/尾桨/垂尾气动干扰计算研究[J]. 航空学报, 2015, 36(9):2874-2883. YE Z, XU G H, SHI Y J. Computational research on aerodynamic characteristics of helicopter main-rotor/tail-rotor/vertical-tail interaction[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2874-2883(in Chinese).
[19] 罗东明, 陈平剑, 吴希明. GMRES算法在悬停旋翼数值模拟中的应用[J]. 空气动力学学报, 2012, 30(4):471-476. LUO D M, CHEN P J, WU X M. Application of GMRES algorithm to hovering rotor simulation[J]. Acta Aerodynamica Sinica, 2012, 30(4):471-476(in Chinese).
[20] 曹栋, 曹义华. 垂直下降状态下的旋翼三维流场数值模拟[J]. 北京航空航天大学学报, 2012, 38(5):641-647. CAO D, CAO Y H. Three dimensional numerical simulation of rotor in vertical descent flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5):641-647(in Chinese).
[21] 叶靓, 招启军, 徐国华. 一种适合于旋翼涡流场计算的非结构自适应嵌套网格方法[J]. 空气动力学学报, 2010, 28(3):261-266. YE L, ZHAO Q J, XU G H. An adaptive unstructured embedded mesh methodology suitable for the calculation on the rotor vortex flowfield[J]. Acta Aerodynamica Sinica, 2010, 28(3):261-266(in Chinese).
[22] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[23] JAMESON A. Time-dependent calculations using multigrid with applications to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston, VA:AIAA, 1991.
[24] LUO H, BAUM J D. A fast, matrix-free implicit method for computing low Mach number flows on unstructured grids:AIAA-1999-3315[R]. Reston, VA:AIAA, 1999.
[25] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[26] FRINK N T. Recent progress toward a three-dimensional unstructured Navier-Stokes flow solver:AIAA-1994-0061[R]. Reston, VA:AIAA, 1994.
[27] KARYPIS G, KUMAR V. METIS unstructured graph partitioning and sparse matrix ordering system version 2.0[M]. Mineapolis:University of Minnesota, 1995.
[28] STOLL P, GERLINGER P, BRUGGEMANN D. Domain decomposition for an implicit LU-SGS scheme using overlapping grids:AIAA-1997-1896[R]. Reston, VA:AIAA, 1997.
[29] PIZIALI R A. 2-D and 3-D oscillating wing aerodynamics for a range of angels of attack including stall:NASA TM-4632[R]. Washington, D. C.:NASA, 1994.
[30] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover[J]. Vertica, 1981, 5(1):149-161.
[31] 唐正飞, 李锋, 高正, 等. 用三维激光多谱勒测速仪对共轴双旋翼悬停流场的测定[J]. 流体力学实验与测量, 1998, 12(1):81-87. TANG Z F, LI F, GAO Z, et al. Measurement of the coaxial-rotor flowfield in hovering using 3-D laser Doppler velocimeter[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(1):81-87(in Chinese).
文章导航

/