综述

自适应旋翼性能研究进展

  • 韩东 ,
  • 董晨 ,
  • 魏武雷 ,
  • 桑玉委
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2017-07-12

  修回日期: 2018-01-16

  网络出版日期: 2018-01-16

基金资助

国家自然科学基金(11472129);直升机旋翼动力学国家级重点实验室基金(6142220050416220002);航空科学基金(20165752048);南京航空航天大学研究生创新基地(实验室)开放基金(KFJJ20170102);中央高校基本科研业务费专项资金

Research progress in performance of adaptive rotor

  • HAN Dong ,
  • DONG Chen ,
  • WEI Wulei ,
  • SANG Yuwei
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2017-07-12

  Revised date: 2018-01-16

  Online published: 2018-01-16

Supported by

National Natural Science Foundation of China (11472129); Foundation of National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics (6142220050416220002); Aeronautical Science Foundation of China (20165752048); Foundation of Graduate Innovation Center in NUAA (KFJJ20170102); the Fundamental Research Funds for the Central Universities

摘要

自适应旋翼不同于常规被动旋翼设计,通过主动改变旋翼参数,优化旋翼升阻比,以适应飞行环境和飞行状态的变化,从而降低旋翼需用功率、提升直升机飞行性能。本文归纳了自适应旋翼在提升旋翼性能方面的国内外研究进展,主要包括:变转速旋翼、变直径旋翼、独立桨距控制旋翼、智能扭转旋翼以及桨叶翼型变体等,并对自适应旋翼提升旋翼性能方面的研究进展进行了总结和展望。

本文引用格式

韩东 , 董晨 , 魏武雷 , 桑玉委 . 自适应旋翼性能研究进展[J]. 航空学报, 2018 , 39(4) : 21603 -021603 . DOI: 10.7527/S1000-6893.2018.21603

Abstract

The design of the adaptive rotor is different from that of the conventional passive rotor. By actively changing the rotor parameters, the rotor lift-to-drag ratio can be optimized to get adaptive to the flight environment and flight condition, so as to reduce the power consumption of the rotor and improve the flight performance of the helicopter. This paper summarizes national and international research progress in using adaptive rotors to improve the performance of the rotor, including the variable speed rotor, variable diameter rotor, individual blade pitch control rotor, active twist rotor, morphing blade airfoil, etc. The research progress and prospects in performance improvement by adaptive rotors are also summarized.

参考文献

[1] SIKORSKY I A. Aerodynamic parameters selection in helicopter design[J]. Journal of the American Helicopter Society, 1960, 5(1):41-60.
[2] BROCKLEHURST A, BARAKOS G N. A review of helicopter rotor blade tip shapes[J]. Progress in Aerospace Sciences, 2013, 56:35-74.
[3] FRADENBURGH E A. Aerodynamic design of the Sikorsky S-76 spirittm helicopter[J]. Journal of the American Helicopter Society, 1979, 24(3):11-19.
[4] GESSOW A. Effects of rotor-blade twist and plan-form taper on helicopter hovering performance:NACA 1542[R].Washington, D.C.:NACA, 1947.
[5] MCVEIGH M A, MCHUGH F J. Influence of tip shape, chord, blade number, and airfoil on advanced rotor performance[J]. Journal of the American Helicopter Society, 1984, 29(4):55-62.
[6] YEN J G. Effects of blade tip shape on dynamics, cost, weigh, aerodynamic performance, and aeroelastic response[J]. Journal of the American Helicopter Society, 1994, 39(4):37-45.
[7] YEO H, BOUSMAN W G, Johnson W. Performance analysis of a utility helicopter with standard and advanced rotors[J]. Journal of the American Helicopter Society, 2004, 49(3):250-270.
[8] KAREM A E. Optimum speed rotor:6007298[P]. 1999-02-19.
[9] PROUTY R W. Should we consider variable rotor speeds?[J]. Vertiflite, 2004, 50(4):24-27.
[10] STEINER J, GANDHI F, YOSHIZAKI Y. An investigation of variable rotor RPM on performance and trim[C]//the American Helicopter Society 64th Annual Forum. Fairfax, VA:American Helicopter Society, 2008:697-705.
[11] DIOTTAVIO J, FRIEDMANN D. Operational benefit of an optimal, widely variable speed rotor[C]//The American Helicopter Society 66th Annual Forum. Fairfax, VA:American Helicopter Society, 2010:1011-1017.
[12] GARAVELLO A, BENINI E. Preliminary study on a wide-speed-range helicopter rotor/turboshaft system[J]. Journal of Aircraft, 2012, 49(4):1032-1038.
[13] MISTÉ G A, BENINI E. Performance of a turboshaft engine for helicopter applications operating at variable shaft speed[C]//Proceedings of the ASME 2012 Gas Turbine India Conference. New York:American Society of Mechanical Engineers, 2012:701-715.
[14] MISTÉG A, BENINI E, GARAVELLO A, et al. A methodology for determining the optimal rotational speed of a variable RPM main rotor/turboshaft engine system[J]. Journal of the American Helicopter Society, 2015, 60(3):0320091-03200911.
[15] MISTRY M, GANDHI F. Helicopter performance improvement with variable rotor radius and RPM[J]. Journal of the American Helicopter Society, 2014, 59(4):13-35.
[16] HAN D, PASTRIKAKIS V, BARAKOS G N. Helicopter performance improvement by variable rotor speed and variable blade twist[J]. Aerospace Science and Technology, 2016, 54(1):164-173.
[17] SEGEL R M, FRADENBRUGH E A. Development of the trac variable diameter rotor concept[C]//AIAA/AHS VTOL Research, Design, and Operations Meeting, George Institute of Technology. Reston, VA:AIAA, 1969:1-10.
[18] KANG H, SABERI H, GRANDHI F. Dynamic blade shape for improved helicopter rotor performance[J]. Journal of the American Helicopter Society, 2010, 59(1):032008.
[19] MISTRY M, GANDHI F. Helicopter performance improvement with variable rotor radius and RPM[J]. Journal of the American Helicopter Society, 2014, 59(4):042010.
[20] FRIEDMANN P P. On-blade control of rotor vibration, noise, and performance:Just around the corner?[J]. Journal of the American Helicopter Society, 2014, 59(4):041001.
[21] PAYNE P R. Higher harmonic rotor control:The possibilities of third and higher harmonic feathering for delaying the stall limit in helicopters[J]. Aircraft Engineering and Aerospace Technology, 1958, 30(8):222-226.
[22] ARCIDIACONO P J. Theoretical performance of helicopters having second and higher harmonic feathering control[J]. Journal of the American Helicopter Society, 1961, 5(2):8-19.
[23] SHAW J, ALBION N, HANKER E J, Jr., et al. Higher harmonic control:Wind tunnel demonstration of fully effective vibratory hub force suppression[J]. Journal of the American Helicopter Society, 1989, 34(1):14-25.
[24] NGUYEN K, CHOPRA I. Effects of higher harmonic control on rotor performance and control loads[J]. Journal of Aircraft, 1992, 29(3):336-342.
[25] JACKLIN S A, LEYLAND J A, BLAAS A. Full-scale wind tunnel investigation of a helicopter individual blade control system[C]//34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 1993:576-586.
[26] JACKLIN S A, BLASS A, TEVES D, et al. Reduction of helicopter BVI noise, vibration, and power consumption through individual blade control[C]//The American Helicopter Society 51st Annual Forum. Fairfax, VA:American Helicopter Society, 1995:662-680.
[27] CHENG R P, THEODORE C R, CELI R. Effects of two/rev higher harmonic control on rotor performance[J]. Journal of the American Helicopter Society, 2003, 48(1):18-27.
[28] CHENG R P, CELI R. Optimum two-per-revolution inputs for improved rotor performance[J]. Journal of Aircraft, 2005, 42(6):1409-1417.
[29] NORMAN T R, THEODORE C, SHINODA P, et al. Full-scale wind tunnel test of a UH-60 individual blade control system for performance improvement and vibration, loads, and noise control[C]//The American Helicopter Society 65th Annual Forum. Fairfax, VA:American Helicopter Society, 2009.
[30] YEO H, ROMANDER E A, NORMAN T R. Investigation of rotor performance and loads of a UH-60A individual blade control system[J]. Journal of the American Helicopter Society, 2011, 56(4):042006.
[31] KESSLER Ch. Active rotor control for helicopters:Individual blade control and swashplateless rotor design[J]. CEAS Aeronautical Journal, 2011(1):23-54.
[32] GESSOW A. Flight investigation of effects of rotor-blade twist on helicopter performance in the high-speed and vertical-autorotative-descent conditions:Technical Report NACA 1666[R].Washington, D.C.:NACA, 1948.
[33] CHEN P, CHOPRA I. Hover testing of smart rotor with induced-strain actuation of blade twist[J]. AIAA Journal, 1997, 35(1):6-16.
[34] CHEN P, CHOPRA I. Wind tunnel test of a smart rotor model with individual blade twist control[J]. Journal of Intelligent Material System and Structures, 1997, 8(5):414-425.
[35] WILBUR M L, YEAGER P H, LANGSTON C W. Vibratory loads reduction testing of the NASA/Army/MIT active twist rotor[J]. Journal of the American Helicopter Society, 2002, 47(2):123-133.
[36] SHIN S, CESNIK C E S, HALL S R. Closed-loop test of the NASA/Army/MIT active twist rotor for vibration reduction[J]. Journal of the American Helicopter Society, 2005, 50(2):178-194.
[37] BERNHARD A P F, WONG J. Wind-tunnel evaluation of a Sikorsky active rotor controller implemented on the NASA/ARMY/MIT active twist rotor[J]. Journal of the American Helicopter Society, 2005, 50(1):65-81.
[38] MONNER H P, OPITZ S, RIEMENSCHNEIDER J, et al. Evolution of active twist rotor design at DLR[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2008:216-223.
[39] MONNER H P, RIEMENSCHNEIDER J, OPITZ S, et al. Development of active twist rotors at the German aerospace center (DLR)[C]//52th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2011:1-11.
[40] RIEMENSCHNEIDER J, OPITZ S. Measurement of twist deflection in active twist rotor[J]. Aerospace Science and Technology, 2011, 15(3):216-223.
[41] ZHANG Q, HOFFMANN F, VAN DER WALL B G. Benefit studies for rotor with active twist control using weak fluid-structure coupling[C]//35th European Rotorcraft Forum. Bonn:German Society for Aeronautics and Astronautics, 2009.
[42] BOYD D D, JR. Initial aerodynamic and acoustic study of an active twist rotor using a loosely coupled CFD/CSD method[C]//35th European Rotorcraft Forum. Bonn:German Society for Aeronautics and Astronautics, 2009:446-457.
[43] JAIN R, YEO H, CHOPRA I. Computational fluid dynamics-computational structural dynamics analysis of active control of helicopter rotor for performance improvement[J]. Journal of the American Helicopter Society, 2010, 55(4):0420041-04200414.
[44] JAIN R, YEO H, CHOPRA I. Examination of rotor loads due to on-blade active controls for performance improvement[J]. Journal of Aircraft, 2010, 47(6):2049-2066.
[45] HAN D, PASTRIKAKIS V, BARAKOS G N. Helicopter flight performance improvement by dynamic blade twist[J]. Aerospace Science and Technology, 2016, 58(1):445-452.
[46] BERNHARD A P F, CHOPRA I. Analysis of a bending-torsion coupled actuator for a smart rotor with active blade tips[J]. Smart Materials and Structures, 2001, 10(1):35-52.
[47] BERNHARD A P F, CHOPRA I. Hover test of a mach-scale rotor model with active blade tips[J]. Journal of the American Helicopter Society, 2002, 39(4):273-284.
[48] BANGLORE A, SANKAR L N. Numerical analysis of aerodynamic performance of rotors with leading edge slats[J]. Computational Mechanics, 1996, 17(5):335-342.
[49] BANGLORE A, SANKAR L N. Forward-flight analysis of slatted rotors using Navier-Stokes methods[J]. Journal of Aircraft, 1997, 34(1):80-86.
[50] YEO H, LIM J W. Application of a slotted airfoil for UH-60A helicopter performance[C]//The American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialist Meeting. Fairfax, VA:American Helicopter Society, 2002:1-17.
[51] LORBER P E, BAGAI A, WAKE B E. Design and evaluation of slatted airfoils for improved rotor performance[C]//The American Helicopter Society 62nd Annual Forum. Fairfax, VA:American Helicopter Society, 2006:87-105.
[52] MISHRA A, BAEDER M. Coupled aeroelastic prediction of the effects of leading-edge slat on rotor performance[J]. Journal of Aircraft, 2016, 53(1):141-157.
[53] LIU L, FRIEDMANN P P, KIM I, et al. Rotor performance enhancement and vibration reduction in presence of dynamic stall using actively controlled flaps[J]. Journal of the American Helicopter Society, 2008, 53(4):338-350.
[54] STRAUB F K, ANAND V R, BIRCHETTE T S, et al. Smart rotor development and wind tunnel test[C]//The 35th European Rotorcraft Forum. Bonn:German Society for Aeronautics and Astronautics, 2009:413-430.
[55] POSTDAM M, FULTON M V, DIMANLIG A. Multidisciplinary CFD/CSD analysis of the smart active flap rotor[C]//The American Helicopter Society 66th Annual Forum. Fairfax, VA:American Helicopter Society, 2010:1756-1777.
[56] RAVICHANDRAN K, CHOPRA I, WAKE B E, et al. Trailing-edge flaps for rotor performance and vibration reduction[J]. Journal of the American Helicopter Society, 2013, 58(2):0220061-02200613.
[57] JAIN R, YEO H. Effects of torsion frequencies on rotor performance and structural loads with trailing edge flap[J]. Smart Materials and Structures, 2012, 21(8):085026.
[58] LORBER P, HEIN B, WONG J. Rotor aeromechanics results from the Sikorsky active flap demonstration rotor[C]//American Helicopter Society 68th Annual Forum. Fairfax, VA:American Helicopter Society, 2012:553-568.
[59] JAIN R, YEO H, CHOPRA I. Investigation of trailing-edge flap gap effects on rotor performance using high-fidelity analysis[J]. Journal of Aircraft, 2013, 50(1):140-151.
[60] KODY F, MAUGHMER M D, SCHMITZ S. Non-harmonic deployment of active devices for rotor performance enhancement[C]//American Helicopter Society 69th Annual Forum. Fairfax, VA:American Helicopter Society, 2013:2215-2227.
[61] KODY F, CORLE B, MAUGHMER M D, et al. Higher-harmonic deployment of trailing-edge flaps for rotor performance enhancement and vibration reduction[J]. Journal of Aircraft, 2016, 53(2):333-342.
[62] WANG C, LU W. Study on performance enhancement of electrically controlled rotor using 2/rev flap control[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(12):2237-2244.
[63] ROTH D, ENENKL B, DIETERICH O. Active rotor control by flaps for vibration reduction-Full scale demonstrator and first flight test results[C]//The 32th European Rotorcraft Forum. Bonn:German Society for Aeronautics and Astronautics, 2006:801-814.
[64] LIEBECK R H. Design of subsonic airfoils for high lift[J]. Journal of Aircraft, 1979, 15(9):547-561.
[65] WANG J J, Li Y C, CHOI K S. Gurney flap-Lift enhancement, mechanisms and applications[J]. Progress in Aerospace Science, 2008, 44:22-47.
[66] KENTFIELD J A C. The potential of gurney flaps for improving the aerodynamic performance of helicopter rotors[C]//International Powered Lift Conference. Reston, VA:AIAA, 1993:293-292.
[67] NELSON J M, KORATKAR N A. Micro-rotorcraft performance improvement using trailing-edge gurney flaps[C]//The American Helicopter Society 60th Annual Forum. Fairfax, VA:American Helicopter Society, 2004:73-87.
[68] KINZEL M P, MAUGHMER M D, LESIEUTRE G A. Miniature trailing-edge effectors for rotorcraft performance enhancement[J]. Journal of the American Helicopter Society, 2007, 51(2):146-158.
[69] BAE E S, GANDHI F, MAUGHMER D. Optimally scheduled deployments of miniature trailing-edge effectors for rotorcraft power reduction[C]//The American Helicopter Society 65th Annual Forum. Fairfax, VA:American Helicopter Society, 2009:71-95.
[70] BAE E S, GANDHI F. Rotor stall alleviation with active gurney flap[C]//The American Helicopter Society 69th Annual Forum. Fairfax, VA:American Helicopter Society, 2013:2285-2298.
[71] PASTRIKAKIS V A, STEIJI R, BARAKOS G N. Effect of active Gurney flaps on overall helicopter flight envelope[J]. The Aeronautical Journal, 2016, 120(1230):1230-1261.
[72] PALACIOS J, KINZEL M, OVERMEYER A. Active gurney flaps:Their application in a rotor blade centrifugal field[J]. Journal of Aircraft, 2014, 51(2):473-489.
[73] LÉON O, HAYDEN E, GANDHI F. Rotorcraft operating envelope expansion using extendable chord sections[C]//The American Helicopter Society 65th Annual Forum. Fairfax, VA:American Helicopter Society, 2009:1940-1953.
[74] KHOSHLAHJEH M, GANDHI F. Extendable chord rotors for helicopter envelope expansion and performance improvement[J]. Journal of the American Helicopter Society, 2014, 59(1):0120071-01200710.
[75] KUMAR D, CESNIK C E S. Performance enhancement and vibration reduction in dynamic stall condition using active camber deformation[J]. Journal of the American Helicopter Society, 2015, 60(2):022001.
[76] YEO H. Assessment of active control for rotor performance enhancement[J]. Journal of the American Helicopter Society, 2008, 53(2):152-163.
[77] 韩东. 变转速旋翼直升机性能及配平研究[J]. 航空学报, 2013, 34(6):1241-1248. HAN D. Study on the performance and trim of helicopters with variable speed rotors[J]. Acta Aeronoutica et Astronautica Sinica, 2013, 34(6):1241-1248(in Chinese).
[78] 徐明, 韩东, 李建波. 变转速旋翼气动特性分析及试验研究[J]. 航空学报, 2013, 34(9):2047-2056. XU M, HAN D, LI J B. Analysis and experimental investigation on the aerodynamic characteristics of variable speed rotor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2047-2056(in Chinese).
[79] 徐明, 李建波, 韩东. 转速优化旋翼的桨叶气动外形参数优化研究[J]. 航空学报, 2015, 36(7):2133-2144. XU M, LI J B, HAN D. Optimal design for aerodynamic shape parameters of optimum speed rotor[J]. Acta Aeronautica et Astronautica, 2015, 36(7):2133-2144(in Chinese).
[80] 刘士明, 杨卫东, 董凌华, 等. 优化转速旋翼性能分析与应用[J]. 南京航空航天大学学报, 2014, 46(6):888-894. LIU S M, YANG W D, DONG L H, et al. Performance investigation and applications of optimum speed rotors[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(6):888-894(in Chinese).
[81] 薛立鹏, 邵松, 张呈林. 变直径倾转旋翼设计研究[J]. 机械科学与技术, 2008, 27(10):1202-1206. XUE L P, SHAO S, ZHANG C L. Design of a variable diameter tilt-rotor[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(10):1202-1206(in Chinese).
[82] 韩东, 张勇刚, 黄东盛. 变直径旋翼直升机飞行性能研究[J]. 南京航空航天大学学报, 2015, 47(2):252-258. HAN D, ZHANG Y G, HUANG D S. Helicopter flight performance improvement by variable rotor diameter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2):252-258(in Chinese).
[83] 王超, 陆洋, 陈仁良. 直升机桨距主动控制对旋翼性能的影响[J]. 航空动力学报, 2014, 29(8):1922-1929. WANG C, LU Y, CHEN R L. Effect of active blade pitch control on helicopter rotor performance[J]. Journal of Aerospace Power, 2014, 29(8):1922-1929(in Chinese).
[84] 崔钊, 韩东, 李建波, 等. 加装格尼襟翼的自转旋翼气动特性研究[J]. 航空学报, 2012, 33(10):1791-1799. CUI Z, HAN D, LI J B, et al. Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1791-1799(in Chinese).
[85] 张勇刚, 崔钊, 韩东, 等. 加装格尼襟翼旋翼的直升机飞行性能[J]. 航空学报, 2016, 37(7):2208-2217. ZHANG Y G, CUI Z, HAN D, et al. Flight performance of helicopter rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2208-2217(in Chinese).
[86] 韩东, 林长亮, 李建波. 旋翼变体技术对直升机性能的提升研究[J]. 航空动力学报, 2014, 29(9):2017-2023. HAN D, LIN C L, LI J B. Helicopter performance improvement by rotor morphing technologies[J]. Journal of Aerospace Power, 2014, 29(9):2017-2023(in Chinese).
文章导航

/