电子电气工程与控制

微动目标跟踪成像一体化的雷达资源优化调度算法

  • 孟迪 ,
  • 张群 ,
  • 罗迎 ,
  • 陈怡君
展开
  • 1. 空军工程大学 信息与导航学院, 西安 710077;
    2. 信息感知技术协同创新中心, 西安 710077

收稿日期: 2017-06-07

  修回日期: 2017-11-03

  网络出版日期: 2017-11-03

基金资助

国家自然科学基金(61631019)

An optimal radar resource scheduling algorithm based on integrated tracking and imaging of micro-motion targets

  • MENG Di ,
  • ZHANG Qun ,
  • LUO Ying ,
  • CHEN Yijun
Expand
  • 1. Institute of Information and Navigation, Air Force Engineering University, Xi'an 710077, China;
    2. Collaborative Innovation Center of Information Sensing and Understanding, Xi'an 710077, China

Received date: 2017-06-07

  Revised date: 2017-11-03

  Online published: 2017-11-03

Supported by

National Natural Science Foundation of China (61631019)

摘要

相控阵雷达可以同时担负搜索、跟踪、识别与成像等多种雷达任务。为了提高雷达对战场环境的感知能力并减轻雷达资源分配的冲突,提出一种微动目标跟踪成像一体化的雷达资源优化调度算法。该算法建立了包含微动目标成像任务的雷达优化调度模型并利用启发式算法求解,利用跟踪脉冲与调度剩余的空闲时间资源,动态地构造感知矩阵并采用正交匹配追踪(OMP)算法对微动目标进行特征提取并成像。仿真结果表明:该算法可以实现稀疏孔径条件下的微动目标成像,并具有良好的鲁棒性,同时进一步提高了雷达系统的资源利用率。

本文引用格式

孟迪 , 张群 , 罗迎 , 陈怡君 . 微动目标跟踪成像一体化的雷达资源优化调度算法[J]. 航空学报, 2018 , 39(2) : 321492 -321492 . DOI: 10.7527/S1000-6893.2017.21492

Abstract

The phased array radar can simultaneously perform multiple tasks, such as searching, tracking, recognition, and imaging. To improve the battlefield perception and relieve conflict of resource distribution of the radar, an optimal radar resource scheduling algorithm is proposed based on integrated tracking and imaging of micro-motion targets in this paper. In the algorithm, the radar resource optimization scheduling model is established and the heuristic algorithm is used to solve it. The perceptual matrix is dynamically constructed by using the tracking pulse and the remaining idle time resources of the scheduling. And the feature extraction and imaging of micro-motion target is realized by using the Orthogonal Matching Pursuit (OMP) algorithm. Simulations demonstrate that the proposed algorithm can obtain the image of the micro-motion target in the case of the sparse aperture and have good robustness, and can achieve higher resource utilization ratio of the radar system.

参考文献

[1] STAILEY J E, HONDL K D. Multifunction phased array radar for aircraft and weather surveillance[J]. Proceedings of the IEEE, 2016, 104(3):649-659.[2] 曾光, 卢建斌, 胡卫东. 多功能相控阵雷达自适应调度算法研究[J]. 现代雷达, 2004, 26(6):14-18. ZENG G, LU J B, HU W D. Research on adaptive scheduling algorithm for multifunctiond phased array radar[J].Modern Radar, 2004, 26(6):14-18(in Chinese).[3] ORMAN A J, POTTS C N, SHAHANI A K. Scheduling for a multifunction phased array radar system[J]. European Journal of Operational Research, 1996, 90(1):13-25.[4] MIRANDA S L C, BAKER C J, WOODBRIDGE K, et al. Fuzzy logic approach for prioritisation of radar tasks and sectors of surveillance in multifunction radar[J]. Iet Radar Sonar & Navigation, 2007, 1(2):131-141.[5] JANG D S, CHOI H L, ROH J E. A time-window-based task scheduling approach for multi-function phased array radars[C]//International Conference on Control, Automation and Systems. Piscataway, NJ:IEEE Press, 2011:1250-1255.[6] 赵宇, 李建勋, 曹兰英, 等. 基于二次规划的相控阵雷达任务自适应调度算法[J]. 系统工程与电子技术, 2012, 34(4):698-703. ZHAO Y, LI J X, CAO L Y, et al. Adaptive scheduling algorithm based on quadratic programing for multifunction phased array radars[J]. Systems Engineering and Electronics, 2012, 34(4):698-703(in Chinese).[7] FAIRCHILD D P, NARAYANAN R M. Multistatic micro-Doppler radar for determining target orientation and activity classification[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(1):512-521.[8] SEN S. Adaptive OFDM radar waveform design for improved micro-Doppler estimation[J]. Sensors Journal IEEE, 2014, 14(10):3548-3556.[9] 张贞凯, 汪飞, 周建江, 等. 多目标跟踪中自适应时间资源调度[J]. 航空学报, 2011, 32(3):522-530. ZHANG Z K, WANG F, ZHOU J J, et al. Adaptive time resource scheduling for multiple target tracking[J]. Acta Aeronautica et Astronautic Sinica, 2011, 32(3):522-530(in Chinese).[10] 李彧晟. 自旋稳定目标的ISAR成像技术研究[D]. 南京:南京理工大学, 2004. LI Y S. Research on ISAR imaging for spin stabilized targets[D]. Nanjing:Nanjing University of Science and Technology, 2004(in Chinese).[11] ZHAO M M, ZHANG Q, LUO Y, et al. Micromotion feature extraction and distinguishing of space group targets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2):174-178.[12] BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4):1982-2001.[13] BARANIUK R G. A lecture on compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4):118-121.[14] CHEN Y J, ZHANG Q, MA C Z, et al. Micro-motion feature extraction of radar target using tracking pulses with adaptive pulse repetition frequency adjustment[J]. Journal of Applied Remote Sensing, 2014, 8(1):083569.[15] 孟迪, 张群, 罗迎, 等. 基于脉冲交错的数字阵列雷达任务优化调度算法[J]. 航空学报, 2017, 38(8):320930. MENG D, ZHANG Q, LUO Y, et al. An effective scheduling algorithm for digital array radar based on pulse interleaving[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):320930(in Chinese).[16] 孙铭才, 张秦, 王世强. 基于改进优先级的相控阵雷达任务调度方法[J]. 空军工程大学学报(自然科学版), 2017, 18(2):37-42. SUN M C, ZHANG Q, WANG S Q. A task scheduling algorithm based on modified priority for phased array radars[J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(2):37-42(in Chinese).
文章导航

/