固体力学与飞行器总体设计

裂纹参数和筋条布局对共振九宫板动态应力强度因子的影响

  • 刘双燕 ,
  • 李玉龙 ,
  • 薛璞 ,
  • 石霄鹏
展开
  • 西北工业大学 航空学院 航空结构工程系 先进结构和材料研究所, 西安 710072

收稿日期: 2017-05-16

  修回日期: 2017-10-22

  网络出版日期: 2017-10-21

基金资助

国家自然科学基金(11472226,11572260)

Effect of crack parameters and stiffener layout on dynamic stress intensity factor of 3×3 grid stiffened panel at resonance

  • LIU Shuangyan ,
  • LI Yulong ,
  • XUE Pu ,
  • SHI Xiaopeng
Expand
  • Institute of Advanced Materials and Structures, Department of Aircraft Structures Engineering, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-05-16

  Revised date: 2017-10-22

  Online published: 2017-10-21

Supported by

National Natural Science Foundation of China (11472226, 11572260)

摘要

由于裂纹的出现会改变振动结构的断裂行为,本文建立了含中心裂纹九宫板结构的有限元模型并采用模态叠加原理快速求解出该结构在共振条件下的裂纹尖端应力强度因子(SIF),然后分析并讨论了裂纹参数(偏转角度和裂纹长度)及筋条布局对应力强度因子的影响。结果表明:随着裂纹偏转角度的增加,Ⅰ、Ⅱ和Ⅲ型应力强度因子最大值分别表现出不同的变化趋势(单调增加、无显著变化、先增加后减小);裂纹长度同时影响应力强度因子最大值和裂纹类型;对于裂纹参数相同的九宫板,筋条布局改变了结构的模态振型,从而导致不同裂纹类型出现;特别地,当九宫板中央区域为正方形时,应力强度因子最大值和裂纹类型对裂纹偏转角度不敏感。

本文引用格式

刘双燕 , 李玉龙 , 薛璞 , 石霄鹏 . 裂纹参数和筋条布局对共振九宫板动态应力强度因子的影响[J]. 航空学报, 2018 , 39(1) : 221423 -221423 . DOI: 10.7527/S1000-6893.2017.21423

Abstract

The fatigue crack generated during vibration would affect the fracture in structures. The 3×3 grid stiffened panel with the center crack was modeled using the finite element method. The modal recombination method was applied to rapidly compute the values of the Stress Intensity Factor (SIF) of crack tip in the panel at resonance. The influence of crack parameters (inclined angle and crack length) and the stiffener layout on SIF values was analyzed. The result shows that the maximum SIF values of the structures for Mode Ⅰ, Mode Ⅱ and Mode Ⅲ showed different trends as the inclined angle of the crack increased (monotonically increase, no significant change, and increase first and then decrease). The maximum SIF values and crack mode were affected by the crack length. For the panels with the same crack parameters, different distribution of the stiffener results in different vibration shape, and thus causes different types of cracks. In particular, effect of the crack inclined angle on the SIF amplitude and crack mode can be ignored when the center region of the panel is square.

参考文献

[1] 姚起杭, 姚军. 工程结构的振动疲劳问题[J]. 应用力学学报, 2006, 23(1):12-15. YAO Q H, YAO J. Vibration fatigue in engineering structures[J]. Chinese Journal of Applied Mechanics, 2006, 23(1):12-15(in Chinese).[2] PAIRS P C, GOMEZ M P, ANDERSON M E. A rational analytical theory of fatigue[J]. Trends in Enginneering, 1961, 13:9-14.[3] 张浩宇, 何宇廷, 冯宇, 等. 先进复合材料薄壁加筋板轴压屈曲特性及后屈曲承载性能[J]. 航空材料学报, 2016, 36(4):55-63. ZHANG H Y, HE Y T, FENG Y, et al. Buckling and post-buckling performance of advanced composite stiffened panel under compression[J]. Journal of Aeronacutical Materials, 2016, 36(4):55-63(in Chinese).[4] 王燕, 李书, 许秋怡, 等. 复合材料加筋板剪切后屈曲分析与优化设计[J]. 航空学报, 2016, 37(5):1512-1525. WANG Y, LI S, XU Q Y, et al. Optimization design and analysis of stiffened composite panels in post-buckling under shear[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1512-1525(in Chinese).[5] KUMAR Y V S, PAIK J K. Buckling analysis of cracked plates using hierarchical trigonometric functions[J]. Thin-Walled Structures, 2004, 42(5):687-700.[6] LEI Z, BAI R, TAO W, et al. Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear[J]. Optics and Lasers in Engineering, 2016, 87:111-119.[7] MOUHAT O, ABDELLATIF K. Dynamic buckling of stiffened panels[J]. Procedia Engineering, 2015, 125:1001-1007.[8] 王博, 田阔, 郑岩冰, 等. 超大直径网格加筋筒壳快速屈曲分析方法[J]. 航空学报, 2017, 38(2):220379. WANG B, TIAN K, ZHENG Y B, et al. A rapid buckling analysis method for large-scale grid-stiffened cylindrical shells[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):220379(in Chinese).[9] PAIK J K, SATISH KUMAR Y V, LEE J M. Ultimate strength of cracked plate elements under axial compression or tension[J]. Thin-Walled Structures, 2005, 43(2):237-272.[10] CUI C, YANG P, LI C, et al. Ultimate strength characteristics of cracked stiffened plates subjected to uniaxial compression[J]. Thin-Walled Structures, 2017, 113:27-38.[11] SHI X H, ZHANG J, GUEDES SOARES C. Experimental study on collapse of cracked stiffened plate with initial imperfections under compression[J]. Thin-Walled Structures, 2017, 114:39-51.[12] 陈安, 魏玉龙, 廖江海, 等. 机身加筋壁板复合加载损伤容限性能试验[J]. 航空学报, 2017, 38(1):420093. CHEN A, WEI Y L, LIAO J H, et al. Damage tolerance test of stiffened fuselage panel under complex load[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):420093(in Chinese).[13] 刘双燕, 李玉龙, 邓琼, 等. 基于ESO法的九宫板阻尼结构的优化设计方法[J]. 振动与冲击, 2016, 35(22):197-203. LIU S Y, LI Y L, DENG Q, et al. Topological optimization design of 3×3 grid stiffened panel with additional damping layers based on evolutionary structural optimization[J]. Journal of Vibration and Shock, 2016, 35(22):197-203(in Chinese).[14] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社, 1981:1-30. Chinese Aeronacutical Establishment. Stress intensity factor handbook[M]. Beijing:Science Press, 1981:1-30(in Chinese).[15] 程靳, 赵树山. 断裂力学[M]. 北京:科学出版社, 2014:57-82. CHENG J, ZHAO S S. Fracture mechanics[M]. Beijing:Science Press, 2014:57-82(in Chinese).[16] DOYLE J F, RIZZI S A. Frequency domain stress intensity calibration of damped cracked panels[J]. International Journal of Fracture, 1993, 61(2):123-130.[17] GALENNE E, ANDRIEUX S, RATIER L. A modal approach to linear fracture mechanics for dynamic loading at low frequency[J]. Journal of Sound and Vibration, 2007, 299(1-2):283-297.[18] ALBUQUERQUE C, CASTRO P, CALCADA R. Efficient crack analysis of dynamically loaded structures using a modal superposition of stress intensity factors[J]. Engineering Fracture Mechanics, 2012, 93:75-91.[19] TRAN V X, GENIAUT S, GALENNE E, et al. A modal analysis for computation of stress intensity factors under dynamic loading conditions at low frequency using eXtended finite element method[J]. Engineering Fracture Mechanics, 2013, 98:122-136.[20] 邱吉宝, 向树红, 张正平. 计算结构动力学[M]. 合肥:中国科学技术大学出版社, 2009:181-182. QIU J B, XIANG S H, ZHANG Z P. Computational structural dynamics[M]. Hefei:University of Science and Technology of China Press, 2009:181-182(in Chinese).[21] HAN Q, WANG Y, YIN Y, et al. Determination of stress intensity factor for mode I fatigue crack based on finite element analysis[J]. Engineering Fracture Mechanics, 2015, 138:118-126.[22] 姜伟, 杨平, 董琴. 平板穿透裂纹尖端动态应力强度因子研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(5):820-825. JIANG W, YANG P, DONG Q. Research on dynamic stress intensity factors for through-cracked plates[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering),2016, 40(5):820-825(in Chinese).[23] ZHU W X, SMITH D J. On the use of displacement extrapolation to obtain crack tip singular stresses and stress intensity factors[J]. Engineering Fracture Mechanics, 1995, 51(3):391-400.[24] GUINEA G V, PLANAS J, ELICES M. KI evaluation by the displacement extrapolation technique[J]. Engineering Fracture Mechanics, 2000, 66(3):243-255.[25] QIAN G, GONZÁLEZ-ALBUIXECH V F, NIFFENEGGER M, et al. Comparison of KI calculation methods[J]. Engineering Fracture Mechanics, 2016, 156:52-67.[26] 戴德沛. 阻尼减振降噪技术[M]. 西安:西安交通大学出版社, 1986:16. DAI D P. Damping technology in vibration and noise reduction[M]. Xi'an:Xi'an Jiaotong University Press, 1986:16(in Chinese).
文章导航

/