电子电气工程与控制

航空光电稳定平台高性能摩擦力补偿方案

  • 王正玺 ,
  • 张葆 ,
  • 李贤涛 ,
  • 张士涛 ,
  • 马丙华
展开
  • 1. 中国科学院长春光学精密机械与物理研究所 中国科学院航空光学成像与测量重点实验室, 长春 130033;
    2. 中国科学院大学, 北京 100049

收稿日期: 2017-04-25

  修回日期: 2017-09-08

  网络出版日期: 2017-09-08

基金资助

中科院长春光机所重大创新工程项目(Y3CX1SS14C)

Friction compensation strategy of high performance for aerial photoelectrical stabilized platform

  • WANG Zhengxi ,
  • ZHANG Bao ,
  • LI Xiantao ,
  • ZHANG Shitao ,
  • MA Binghua
Expand
  • 1. Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-04-25

  Revised date: 2017-09-08

  Online published: 2017-09-08

Supported by

Key Innovation Project of the Chinese Academy of Science in Changchun Institute of Optics (Y3CX1SS14C)

摘要

为了在传统控制器基础上进一步提高航空光电稳定平台的性能,减轻机械伺服系统中摩擦环节对视轴(LOS)稳定及激光指向带来的负面影响,提出了一种基于自抗扰控制器(ADRC)的高性能摩擦力补偿方案。首先,在原有系统中引入LuGre模型来初步抑制摩擦对伺服系统的扰动;然后,通过设计自抗扰控制器对摩擦补偿后仍然存在的残余扰动进行进一步抑制;最后为了验证本控制策略对系统扰动的抑制效果,将航空光电稳定平台安装在飞行模拟转台进行实验,测试加入基于自抗扰控制器的摩擦补偿方案前后的性能对比。实验结果表明:对比传统的控制方案,在速度稳定实验中,引入摩擦力和自抗扰相结合控制方案的光电平台扰动隔离度至少提高了14 dB,在目标跟踪实验中,系统的视轴晃动强度也至少降低了78.9%。该补偿方案易于实现,与光电平台的兼容性好,满足航空光电稳定平台的高精度要求。

本文引用格式

王正玺 , 张葆 , 李贤涛 , 张士涛 , 马丙华 . 航空光电稳定平台高性能摩擦力补偿方案[J]. 航空学报, 2017 , 38(12) : 321350 -321350 . DOI: 10.7527/S1000-6893.2017.321350

Abstract

To improve the performance of airborne photoelectric stabilized platform on the basis of traditional controller and reduce the negative influence of friction in Line of Sight (LOS) stabilization and pointing of mechanical servo system, a scheme for friction compensation control based on the Active Disturbance-rejection Controller (ADRC) is proposed. First, the LuGre model is introduced into the original system to suppress the disturbance of the servo system. Then, the residual disturbance caused by the friction compensation is further suppressed by designing the ADRC controller. To verify the disturbance rejection performance of the control strategy, the aviation photoelectric stabilized platform is installed in the flight simulator experiment test. The performance before and after addition of the friction compensation scheme based on the ADRC is compared. Experimental results show that compared with the traditional control scheme, the isolation of the photoelectric platform with the scheme proposed is improved by at least 14 dB. In the target tracking experiment, the system's LOS stabilization is reduced by at least 78.9%. The compensation scheme is easy to realize and is compatible with the photoelectrical platform, meeting the requirements of high precision aeronautical optoelectronic stability platform.

参考文献

[1] 王锐. 激光红外主被动复合导引系统[J]. 中国光学, 2013, 6(4):536-543. WANG R. Compound guidedsystem with active laserimaging and passive infrared imaging[J]. Chinese Optics, 2013, 6(4):536-543(in Chinese).[2] 姬伟, 李奇. 陀螺稳定平台视轴稳定系统自适应模PID控制[J]. 航空学报, 2007, 28(1):191-195. JI W, LI Q. Adaptive fuzzy PID control for LOS stabilization system on gyro stabilized platform[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):191-195(in Chinese).[3] 王广雄, 何朕. 控制系统设计[M]. 北京:清华大学出版社, 2008:51-77. WANG G X, HE Z. Control system design[M]. Beijing:Tsinghua University Press, 2008:51-77(in Chinese).[4] TIAN D P, SH H H, DAI M. Improving the rapidity of nonlinear tracking differentiator via feed forward[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7):3736-3743.[5] 李贤涛, 张葆, 孙敬辉, 等. 航空光电稳定平台扰动频率自适应的自抗扰控制[J]. 红外与激光工程, 2014, 43(5):1575-1581. LI X T, ZHANG B, SUN J H, et al. ADRC based on disturbance frequency adaptive of aerial photoelectrical stabilized platform[J]. Infrared and Laser Engineering, 2014, 43(5):1575-1581(in Chinese).[6] 黄显林, 鲍文亮, 卢鸿谦, 等. 一种具有时变观测器增益的摩擦补偿方法[J]. 电机与控制学报, 2011, 15(11):46-49. HUANG X L, BAO W L, LU H Q, et al. Friction compensation using observers with time-varying gain[J]. Electric Machines and Control, 2011, 15(11):46-49(in Chinese).[7] 王毅, 何朕, 王广雄. 一种实用的摩擦模型[J]. 电机与控制学报, 2011, 15(11):59-63. WANG Y, HE Z, WANG G X. A practical friction model[J]. Electric Machines and Control, 2011, 15(8):59-63(in Chinese).[8] KIM Y H, LEWIS F L. Reinforcement adaptive learing neuralnet-based friction compensation control for high speed and precision[J]. IEEE Transactions on Control Systems Technology, 2000, 8(1):118-126.[9] CANUDAS D W C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3):419-425.[10] 廖洪波, 范世珣, 黑墨, 等. 光电稳定平台伺服系统动力学建模与参数辨识[J]. 光学精密工程, 2015, 23(2):477-483. LIAO H B, FAN S X, HEI M, et al.. Modeling and parameter identification for electro-optical stabilized platform servo systems[J]. Optics and Precision Engineering, 2015, 23(2):477-483(in Chinese).[11] 张黎黎, 黄一, 吕俊芳. 机载光电跟瞄平台伺服系统中电流环的设计与仿真[J]. 理论与实践, 2003, 23(6):15-21. ZHANG L L, HUANG Y, LV J F. Design and simulation of current-loop for servo of airborne electro-optical pointing and tracking platform[J]. Theory and Practice, 2003, 23(6):15-21(in Chinese).[12] 左哲, 李东海, 戴亚平, 等. 陀螺稳定平台状态补偿控制[J]. 航空学报, 2008, 29(1):141-148. ZUO Z, LI D H, DAI Y P, et al. State compensating control for gyro-stabilized platform[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):141-148(in Chinese).[13] ARMSTRONG H B. Control of machines with friction[J]. Automatic, 1992, 28(6):1285-1287.[14] KARNOPP D. Computer simulation of slip-stick friction in mechanical dynamic systems[J]. Journal of Dynamic Systems Mesurement & Control, 1985, 107(1):100-103[15] 刘强, 尔联洁, 刘金琨. 摩擦非线性环节的特性、建模与控制补偿综述[J]. 系统工程与电子技术, 2002, 24(11):45-52. LIU Q, ER L J, LIU J K. Overview of characteristics, modeling and compensation of nonlinear friction in servo systems[J]. Systems Engineering and Electronics, 2002, 24(11):45-52(in Chinese).[16] 王英, 雄振华, 丁汉. 基于状态观测的自适应摩擦力补偿的高精度控制[J]. 自然科学进展, 2005, 15(9):1100-1105. WANG Y, XIONG Z H, DING H. Adaptive state observer based on friction compensation for high-precision control[J]. Natural Science Development, 2005, 15(9):1100-1105(in Chinese).[17] 王婉婷, 郭劲, 姜振华, 等. 光电跟踪自抗扰控制技术研究[J]. 红外与激光工程, 2017, 46(2):211-218. WANG W T, GUO J, JIANG Z H, et al. Study on photoelectric tracking system based on ADRC[J]. Infrared and Laser, 2017, 46(2):211-218(in Chinese).[18] KEMPF C J, KOBAYASHI S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table[J]. IEEE Transactions on Control Systems Technology, 1999, 7(5):513-526.[19] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transaction on Industrial Electronics, 2009, 56(3):900-906.[20] 李贤涛, 张葆, 沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J]. 光学精密工程, 2014, 22(8):2223-2231. LI X T, ZHANG B, SHEN H H. Improvement of isolation degree of aerial photoelectrical stabilized platform based on ADRC[J]. Optics and Precision Engineering, 2014, 22(8):2223-2231(in Chinese).[21] 韩京清. 自抗扰控制技术-估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2009:243-287. HAN J Q. Active disturbances rejection control technique-the technique for estimating and compensating the uncertainties[M]. Beijing:National Defense Industry Press, 2009:243-287(in Chinese).
文章导航

/