流体力学与飞行力学

局部催化特性差异对气动热环境影响的计算分析

  • 丁明松 ,
  • 董维中 ,
  • 高铁锁 ,
  • 江涛 ,
  • 刘庆宗
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2017-07-06

  修回日期: 2017-08-31

  网络出版日期: 2017-08-31

Computational analysis of influence of differences in local catalytic properties on aero-thermal environment

  • DING Mingsong ,
  • DONG Weizhong ,
  • GAO Tiesuo ,
  • JIANG Tao ,
  • LIU Qingzong
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-07-06

  Revised date: 2017-08-31

  Online published: 2017-08-31

摘要

高温气体非平衡效应及其壁面催化效应对高超声速飞行器气动热环境造成显著影响,是当前高超声速飞行器气动热环境预测和热防护设计的关键问题之一。考虑高温空气离解与电离等化学反应、气体分子热力学激发、流动中的非平衡效应和壁面催化效应,通过数值求解三维热化学非平衡Navier-Stokes方程和壁面处质量、能量平衡关系,完善了高温气体热化学非平衡流场有限催化气动热环境数值计算方法和计算程序,采用典型算例进行了考核验证。在此基础上,开展了不同条件下高超声速飞行器热化学非平衡流场气动热环境数值模拟,分析局部催化特性差异对气动热环境的影响。研究表明:所建立的高超声速飞行器热化学非平衡流场有限催化气动热环境数值计算方法及程序,其数值模拟结果与飞行试验、文献符合;局部催化特性差异会导致热流跳变,其热流跳变量与催化特性差异量、材料分布方式等有关;催化特性差异较大时,局部区域热流可能远远高于飞行器全表面完全催化的热流结果,此时将飞行器在全表面完全催化(FCW)和完全非催化(NCW)条件下的数值模拟结果作为实际飞行过程中表面热流的上、下限这一简化处理方式,是不可取的。

本文引用格式

丁明松 , 董维中 , 高铁锁 , 江涛 , 刘庆宗 . 局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报, 2018 , 39(3) : 121588 -121588 . DOI: 10.7527/S1000-6893.2017.121588

Abstract

The influence of aero-thermal environment of hypersonic vehicle because of high temperature air non-equilibrium effect and the catalytic effect has been one of the critical problems in aero-thermal environment prediction and hypersonic vehicle design. Considering the chemical reaction of the high temperature air, vibrational excitation of gas molecules, non-equilibrium effects in the flow and the catalytic effect on the vehicle surface, numerical simulation method and the corresponding computational codes are developed for the aero-thermal environment of thermo-chemical non-equilibrium flow by solving 3D thermochemical non-equilibrium Navier-Stokes equations and the balance between the mass and energy on the vehicle surface. The numerical results of the typical examples agree well with foreign reference data and flight data. On this basis, the influence of differences in local catalytic properties on the aero-thermal environment of the hypersonic vehicle under different conditions is studied. These results show that the differences in local catalytic properties can obviously lead to the jump of the heat flux. When the difference between local catalytic properties is lager, the local heat flux is far higher than the result under the fully catalytic wall condition of the whole vehicle surface, and the simplified approach of using the heat flux under the whole vehicle surface Fully Catalytic Wall (FCW) and Non-Catalytic Wall (NCW) conditions as its bounds for the actual fight is not advisable.

参考文献

[1] BOYD I D. Modeling of associative ionization reactions in hypersonic rarefied flows[J]. Physics of Fluids, 2007, 19(9):3-14.
[2] OZAWA T, LEVIN D A, NOMPELIS I, et al. Particle and continuum method comparison of a high altitude Mach number reentry flow[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2):225-240.
[3] LOFTHOUSE A J, SCALABRINY L C, BOYD I D. Hypersonic aerothermodynamics analysis across non-equilibrium regimes using continuum and particle methods:AIAA-2007-3903[R]. Reston, VA:AIAA, 2007.
[4] WEN C Y, MASSIMI H S, CHEN Y S, et al. Numerical simulations of non-equilibrium flows over rounded models at reentry speeds:AIAA-2012-5906[R]. Reston, VA:AIAA, 2012.
[5] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京:北京航空航天大学, 1996:3-30. DONG W Z. Numerical simulation and analysis of thermo-chemical non-equilibrium effects at hypersonic flows[D]. Beijing:Beihang University, 1996:3-30(in Chinese).
[6] 董维中. 气体模型对高超声速再入钝体气动参数计算影响的研究[J]. 空气动力学学报, 2001, 19(2):197-202. DONG W Z. Thermal and chemical model effect on the calculation of aerodynamic parameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2):197-202(in Chinese).
[7] 董维中, 高铁锁, 丁明松, 等. 高超声速非平衡流场多个振动温度模型的数值研究[J]. 空气动力学学报, 2007, 25(1):1-6. DONG W Z, GAO T S, DING M S, et al. Numerical studies of the multiple vibrational temperature model in hypersonic non-equilibrium flows[J]. Acta Aerodynamica Sinica, 2007, 25(1):1-6(in Chinese).
[8] 乐嘉陵. 再入物理[M]. 北京:国防工业出版社, 2005:9-21. LE J L. Reentry physics[M]. Beijing:National Defence Industry Press, 2005:9-21(in Chinese).
[9] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory:AIAA-2000-2366[R]. Reston, VA:AIAA, 2000.
[10] KUROTAKI T, MATSUZAKI T. CFD evaluation of catalytic model on SiO2-based TPS in arc-heated wind tunnel:AIAA-2003-0155[R]. Reston, VA:AIAA, 2003.
[11] JOCHEN M, MATTHEW M. Finite-rate surface chemistry model, I:Formulation and reaction system examples:AIAA-2011-3783[R]. Reston, VA:AIAA, 2011.
[12] STEWART D A. Surface catalysis and characterization of proposed candidate TPS for access-to-space vehicles:NASA TM-112206[R]. Washington, D.C.:NASA, 1997.
[13] STEWART D A. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE:AIAA-1991-1373[R]. Reston, VA:AIAA, 1991.
[14] ANTONIO V. Effect of finite rate chemical models on the aerothermodynamics of reentry capsules:AIAA-2008-2668[R]. Reston, VA:AIAA, 2008.
[15] INGER G R. Nonequilibrium hypersonic stagnation flow at low Reynolds numbers:TDR-269(4230-20)-10[R]. EI Segundo, CA:Aerospace Corporation, 1964.
[16] GOULARD R J. On catalytic recombination rates in hypersonic stagnation on heat transfer[J]. Jet Propulsion, 1958, 28(11):737-745.
[17] STEWART D A, RAKICH J V, LANFRANCO M J. Catalytic surface experiment on the space shuttle:AIAA-1981-1143[R]. Reston, VA:AIAA, 1981.
[18] SCOTT C D. Wall catalytic recombination and boundary conditions in non-equilibrium hypersonic flows-With applications:94A10765[R]. Washington, D.C.:NASA, 1992.
[19] SUBRAHMANYAM P. Development of a parallel CFD solver SPARTA for aerothermodynamic analysis:AIAA-2007-2976[R]. Reston, VA:AIAA, 2007.
[20] EDQUIST K T. Afterbody heating predictions for a Mars science laboratory entry vehicle:AIAA-2005-4817[R]. Reston, VA:AIAA, 2005.
[21] 董维中, 乐嘉陵, 刘伟雄. 驻点壁面催化速率常数确定的研究[J]. 流体力学实验与测量, 2000, 14(3):1-6. DONG W Z, LE J L, LIU W X. The determination of catalytic rate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6(in Chinese).
[22] 曾明, 冯海涛, 瞿章华. 不同热化学模型对表面传热影响的数值分析[J]. 国防科技大学学报, 2001, 23(5):27-31. ZENG M, FENG H T, QU Z H. Numerical analysis of the effects for different thermo-chemical models on heat transfer[J]. Journal of National University of Defense Technology, 2001, 23(5):27-31(in Chinese).
[23] 柳军. 热化学非平衡流及其辐射现象的实验和数值计算研究[D]. 长沙:国防科学技术大学, 2004:3-25. LIU J. Experimental and numerical research on thermo-chemical nonequilibrium flow with radiation phenomenon[D]. Changsha:National University of Defense Technology, 2004:3-25(in Chinese).
[24] 高冰, 杭建, 林贞彬, 等. 高温真实气体效应中催化效应对气动热影响的实验探索[J]. 流体力学实验与测量, 2004, 18(2):55-58. GAO B, HANG J, LIN Z B, et al. The experiment exploration of catalyst effects on aerodynamic heat in real gas effects[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(2):55-58(in Chinese).
[25] 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨:哈尔滨工业大学, 2014:2-50. JIN H. Surface catalyticity properties testing and characterization methods of thermal protection materilas[D]. Harbin:Harbin Institute of Technology, 2014:2-50(in Chinese).
[26] 苗文博, 程晓丽, 艾邦成. 来流条件对热流组分扩散项影响效应分析[J]. 空气动力学学报, 2011, 29(4):476-480. MIAO W B, CHENG X L, AI B C. Flow configuration effects on mass diffusion part of heat-flux in thermal-chemical flows[J]. Acta Aerodynamica Sinica, 2011, 29(4):476-480(in Chinese).
[27] 苗文博, 程晓丽, 艾邦成. 高超声速流动壁面催化复合气动加热特性[J]. 宇航学报, 2013, 34(3):442-446. MIAO W B, CHENG X L, AI B C. Surface catalysis recombination aero-heating characteristics of hypersonic flow[J]. Journal of Astronautics, 2013, 34(3):442-446(in Chinese).
[28] 苗文博, 罗晓光, 程晓丽, 等. 壁面催化对高超声速飞行器气动特性影响[J]. 空气动力学学报, 2014, 32(2):236-239. MIAO W B, LUO X G, CHENG X L, et al. Surface recombination effects on aerodynamic loads of hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2014, 32(2):236-239(in Chinese).
[29] 杨肖峰, 唐伟. 火星环境高超声速催化加热特性[J]. 宇航学报, 2017, 38(2):205-211. YANG X F, TANG W. Hypersonic catalytic aeroheating characteristics for mars entry process[J]. Journal of Astronautics, 2017, 38(2):205-211(in Chinese).
[30] 董维中, 丁明松, 高铁锁, 等. 热化学非平衡模型和表面温度对气动热计算影响分析[J]. 空气动力学学报, 2013, 31(6):692-698. DONG W Z, DING M S, GAO T S, et al. The influence of thermo-chemical non-equilibrium model and surface temperature on heat transfer rate[J]. Acta Aerodynamica Sinica, 2013, 31(6):692-698(in Chinese).
[31] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1):311-324. DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324(in Chinese).
[32] PARK C. Review of chemical-kinetic problems of future NASA missions, I:Earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3):385-398.
[33] GOKCEN T. Effects of flow field non-equilibrium on convective heat transfer to a blunt body:AIAA-1996-0325[R]. Reston, VA:AIAA, 1996.
[34] MUYLAERT J. Standard model testing in the European high facility F4 and extrapolation to flight:AIAA-1992-3905[R]. Reston, VA:AIAA, 1992.
文章导航

/