流体力学与飞行力学

锥导乘波体构型的气动特性不确定度分析

  • 宋赋强 ,
  • 阎超 ,
  • 马宝峰 ,
  • 鞠胜军
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100083

收稿日期: 2017-06-15

  修回日期: 2017-08-31

  网络出版日期: 2017-08-31

Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration

  • SONG Fuqiang ,
  • YAN Chao ,
  • MA Baofeng ,
  • JU Shengjun
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2017-06-15

  Revised date: 2017-08-31

  Online published: 2017-08-31

摘要

为研究锥导乘波体偏离设计条件下气动特性变化情况,采用稀疏的非嵌入式混沌多项式方法,对乘波体气动特性进行了不确定性量化及全局非线性灵敏度分析。首先,采用CATIA二次开发技术对锥导乘波体进行参数化建模;其次,在来流速度、温度、密度和迎角满足特定扰动的条件下,通过拉丁超立方试验设计生成样本,并采用CFD进行计算;最后,根据试验设计样本建立响应面,通过混沌多项式分析得到了乘波体气动力系数的不确定度。灵敏度分析结果表明,迎角在锥导乘波体的气动特性变化中起主导作用。对马赫数和压强的流场不确定性分析结果表明,气动特性变化主因是乘波体前缘处的压力泄漏,影响了上表面压力分布,导致了气动性能的改变。

本文引用格式

宋赋强 , 阎超 , 马宝峰 , 鞠胜军 . 锥导乘波体构型的气动特性不确定度分析[J]. 航空学报, 2018 , 39(2) : 121519 -121519 . DOI: 10.7527/S1000-6893.2017.121519

Abstract

To study the variation of aerodynamic performances of a cone-derived waverider under the off-design condition, a sparse non-intrusive polynomial chaos method along with nonlinear global sensitivity analysis are used to achieve the uncertainty quantification of aerodynamic characteristics of the waverider. A parametric model of the cone-derived waverider is constructed by the secondary development of CATIA software. Under the condition when the flow velocity, temperature, density as well as the angle of attack can satisfy the specific disturbances, the sample data are generated by experimental design of Latin Hypercube sampling and calculated by the CFD method. The uncertainty of the aerodynamic coefficients of the waverider is obtained by non-intrusive polynomial chaos analysis based on the response surface established by the preceding sample data. The sensitivity analysis results show that the angle of attack plays a leading role in the variation of aerodynamic characteristics of the cone-derived waverider. The uncertainty analysis of the flow field of Mach number and pressure indicates that the main reason for the the variation of aerodynamic characteristics is pressure leakage at the leading edge of the waverider, which affects the distribution of the upper surface pressure and leads to deterioration of aerodynamic performances.

参考文献

[1] AHN J, KIM H J, LEE D H, et al. Response surface method for airfoil design in transonic flow[J]. Journal of Aircraft, 2001, 38(2):231-238.[2] VAVALLE A, QIN N. Iterative response surface based optimization scheme for transonic airfoil design[J]. Journal of Aircraft, 2007, 44(2):365-376.[3] PADULO M, MAGINOT J, GUENOV M, et al. Airfoil design under uncertainty with robust geometric parameterization:AIAA-2009-2270[R]. Reston, VA:AIAA, 2009.[4] PADULO M, CAMPOBASSO M S, GUENOV M D. Novel uncertainty propagation method for robust aerodynamic design[J]. AIAA Journal, 2011, 49(3):530-543.[5] CROICU A M, HUSSAINI M Y, JAMESON A, et al. Robust airfoil optimization using maximum expected value and expected maximum value approaches[J]. AIAA Journal, 2012, 50(9):1905-1919.[6] ZANG T A, HEMSCH M J, HILBURGER M W, et al. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles:NASA/TM-2002-211462[R]. Washington, D.C.:NASA, 2002.[7] 徐崇刚,胡远满,常禹, 等. 生态模型的灵敏度分析[J]. 应用生态学报, 2004,15(6):1056-1062. XU C G, HU Y M, CHANG Y, et al. Sensitivity analysis in ecological modeling[J]. Chinese Journal of Applied Ecology, 2004, 15(6):1056-1062(in Chinese).[8] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1):271-280.[9] SALTELLI A, RATTO M, ANDRES T, et al. Global sensitivity analysis:The primer[M]. New York:John Wiley & Sons, 2008:138-153.[10] ZHANG Y. Efficient uncertainty quantification in aerospace analysis and design[D]. Missouri:Missouri University of Science and Technology, 2013:13-40.[11] WESTIV T K, JOHNSTON C O, HOSDER S. Uncertainty and sensitivity analysis of afterbody radiative heating predictions for earth entry[J]. Journal of Thermophysics and Heat Transfer, 2017, 31(2):294-306.[12] ALEXEENKO A, WEAVER A B, GREENDYKE R B, et al. Flowfield uncertainty analysis for hypersonic CFD simulations:AIAA-2010-1180[R]. Reston, VA:AIAA, 2010.[13] 刘全, 王瑞利, 林忠. 非嵌入式多项式混沌方法在拉氏计算中的应用[J]. 固体力学学报, 2013, 10(33):224-233. LIU Q, WANG R L, LIN Z. Uncertainty quantification for Lagrangian cmputation using non-instrusive polynomial chaos[J]. Chinese Journal of Solid Mechanics, 2013, 10(33):224-233(in Chinese).[14] 邬晓敬, 张伟伟, 宋述芳, 等. 翼型跨声速气动特性的不确定性及全局灵敏度分析[J].力学学报, 2015,47(4):588-595. WU X J, ZHANG W W, SONG S F, et al. Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4):588-595(in Chinese).[15] 赵志, 宋文艳, 肖隐利. 高超声速锥导乘波体非设计点性能研究[J].飞行力学, 2009, 27(1):47-50. ZHAO Z, SONG W Y, XIAO Y L. Numerical simulation on off-design performance of hypersonic cone-derived waverider[J]. Flight Dynamics, 2009, 27(1):47-50(in Chinese).[16] 王发民,丁海河,雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J].中国科学:技术科学,2009,39(11):1828-1835 WANG F M, DING H H, LEI M F. Wide-velocity aerodynamic characteristics and study of waverider configuration aircrafts[J]. Science China:Technical Science, 2009, 39(11):1828-1835(in Chinese).[17] 李世斌,罗世彬,黄伟, 等. 新型宽速域高超声速飞行器气动特性研究[J]. 固体火箭技术, 2012, 35(5):588-592. LI S B,LUO S B,HUANG W,et al. Investigation on aerodynamic performance for a novel wide-ranged hypersonic vehicle[J]. Journal of Solid Rocket Technology, 2012, 35(5):588-592(in Chinese).[18] 段焰辉,范召林,吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10):3023-3034. DUAN Y H, FAN Z L, WU W H. Generation and design methods of osculating cone waverider with constant angle of sweepback[J] Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3023-3034(in Chinese).[19] 苗萌. 高超声速飞行器气动布局优化设计[D]. 北京:北京航空航天大学,2012:43-45. MIAO M. Optimization design of aerodynamic configuration of hypersonic aircraft[D]. Beijing:Beihang University, 2012:43-45(in Chinese).[20] 耿永兵, 刘宏, 姚文秀, 等.锥形流乘波体优化设计研究[J]. 航空学报, 2006, 27(1):23-28. GENG Y B,LIU H,YAO W X, et al. Viscous optimized design of waverider derived from cone flow[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1):23-28(in Chinese).[21] 熊芬芬, 杨树兴, 刘宇, 等. 工程概率不确定性分析方法[M]. 北京:科学出版社, 2015:115-117. XIONG F F, YANG S X, LIU Y, et al. Engineering probability uncertainty analysis method[M]. Beijing:Science Press, 2015:115-117(in Chinese).[22] XIU D, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1):137-167.[23] 甘文彪, 阎超. 乘波飞行器一体化构型设计[J]. 空气动力学学报, 2012, 30(1):68-73. GAN W B, YAN C. Waverider design of integrated configuration[J]. Acta Aerodynamica Sinica, 2012, 30(1):68-73(in Chinese).
文章导航

/